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Introduction

This book on rock fall engineering has arisen from an initial passing interest in the subject
as the result of extensive project work on transportation projects in the mountainous area of
North America. This interest developed into a mission to fully understand all aspects of rock
fall behavior and the application of this behavior to the design and construction of protec-
tion structures. Lately, this mission has evolved into an obsession to help develop improved
methods of modeling rock falls and the design of more efficient and cost-effective protection
structures.

As with my other two books, Foundations on Rock and Rock Slope Engineering, the
intention of this book is to provide both the theory, and the application of the theory to
design. In this book, this approach involves describing five case studies where the impacts
are well defined, and then showing how trajectory calculations and impact mechanics can
be applied to these actual rock fall conditions. It is hoped that the field data will be useful
for calibration of computer rock fall simulation programs.

In addition, a wide range of well-proven rock fall protection measures are discussed.
These discussions describe both design methods, and practical construction experience
based on many projects in which the author has been involved. It is intended that users of
this book will be both researchers working on the development of rock fall simulation, and
practitioners working in the field of rock fall mitigation design and construction.

My work on rock falls has benefited from my association over many years with practitio-
ners involved with the design and construction of mitigation structures. These people include
Dale Harrison, Chuck Brawner, and British Columbia Ministry of Transport personnel in
Canada; John Duffy in California; Bob Barrett, Rick Andrew, Randy Jibson (USGS); and
Ty Ortiz (CDOT) in Colorado. In Japan, I have worked closely with Toshimitsu Nomura
and his colleagues at Protec Engineering, as well as Dr. Masuya at Kanazawa University and
Dr. Hiroshi Yoshida. Dr. Bill Stronge of Cambridge University has also been most helpful
in furthering my understanding of impact mechanics as well as Dr. Giacomini at Newcastle
University in Australia.

I also acknowledge my long association with the Canadian Pacific Railway and their rock
mechanics engineer Tony Morris. Many of the concepts discussed in this book have devel-
oped from a wide variety of rock fall protection projects that the railway has undertaken.

The research on rock falls and the preparation of this book have involved the collection of
field data and analysis of the results. I have received much valuable assistance in this work
from Thierry Lavoie, Phillip Lesueur, and Tom Beingessner while they were attending the
University of British Columbia. In addition, Tom Reynolds conducted the model tests of atten-
uator nets and canopies, Jan Meyers has spent long hours compiling references and research
documents, and Rhona Karbusicky found many vital and sometimes obscure references. Most
important, Cheng-Wen Tina Chen has provided invaluable assistance in data analysis and
preparing drawings and in overall organization and preparation of the manuscript.
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[ am appreciative.

I would also like to acknowledge the support of my family during yet another long period
of dedication to book writing,.

Duncan C. Wyllie
North Vancouver, Canada



Foreword

After having published two highly appreciated books on geological engineering for rock
slopes, then for rock foundations, Duncan Wyllie now presents a fine instructive volume on
geological engineering for protecting rock cuts and engineering works potentially threatened
by rock falls. This richly illustrated treatise improves the practical tools available for evalu-
ating and remediating potential rock fall hazards that can threaten highways and develop-
ments with high-velocity rock mass impacts. This work is not intended to be a survey of
various geologies and methodologies, but rather functions as a practical tutor for geologists
and engineers evaluating rock fall hazards and engineering safeguards.

The book is clearly written and concise, and contains ideas refining and focusing the
analytical treatment of rock fall paths, and energies, including an introduction to the funda-
mentals of impact mechanics. There follows a discussion of the kinematics and energy bal-
ances of bouncing trajectories affecting a rock fall’s path and velocity as well as a detailed
discussion of coefficients of restitution. The attention given to these important facets of rock
fall engineering, which may be new to some readers, gives special value to this book.

The importance of accurately accounting for energy gains and losses during rock fall
descent is very much in my mind as I recall an experience observing a series of rock fall tests
at an abandoned quarry being considered for home construction. Large blocks of rock were
trucked to the quarry top and released. Each block path was filmed up to its final landing,.
Observing from below at “a very safe distance,” I witnessed some surprising block trajec-
tories in which a large block bouncing from a rock shelf would explosively release a host of
smaller block fragments on entirely new paths. After I left the site, the experiment continued
and several large block pieces over-flew my previous “safe™ station.

The issue of rock fall protection is well presented, with chapters on selection and design
of rock fall protection ditches, barriers, nets, fences, and rock sheds. Very importantly, the
application of popular computational systems for rock fall modeling is evaluated in the light
of five instructive case histories.

Richard E. Goodman
Emeritus Professor of Geological Engineering
University of California, Berkeley, CA
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Nomenclature

0 Subscript for velocities at the start of trajectory (¢ = 0)

A Width of MSE barrier at impact height (m)

A Constant used in [time—force] relationship for flexible nets; acceleration

B Base width of MSE barrier (m)

B Constant used in [time—force] relationship for stiff nets

C  Coefficient related to mode of failure of rock sheds; crest width of MSE barrier (m)

D Diameter of falling rock (m)

d, Drill hole diameter (mm)

ey Normal coefficient of restitution

e Tangential coefficient of restitution

E. Energy absorbed during compression phase of impact (J)

.. Energy efficiency for fence design

(E~E,) Energy recovered during restitution phase of impact (J)

E, E; Impact (i) and restitution (final, f) energies for impact with protection structures (J)

F  Force (N)

f Subscript for velocities and energies at the completion of impact (¢ = f)

g Gravitational acceleration (m - s-2)

H Rock fall height (m)

b Trajectory height—vertical (m)

h' Trajectory height—normal to slope (m)

I Moment of inertia (kg - m2)

I’ Tensor defining components of moments of inertia

i Subscript for velocities at the moment of impact (¢ = #); inclination of asperities (degrees)

k  Radius of gyration (m)

L Side length of cubic block; length of trajectory between impacts; bond length of rock
bolts; sliding length of rock falls (m)

M Average mass of rock falls related to Gumbel extreme value theory

m  Mass of rock fall (kg)

m,,, Mass of rock fall at impact point 7 (kg)

my, Mass of rock fall at source (kg)

N Subscript for the component of velocity normal to the slope

n  Impact number; gradient of line for [time—force] relationship for rigid structures

P Equivalent static force in roof of rock sheds (kIN)

p Probability

pn Normal impulse (kg + m - s71)

pr Tangential impulse (kg * m - s71)

R Frictional resistance at impact point

7 Radius of rock fall body (m)

23]
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xviii Nomenclature

S Sliding distance (m); standard deviation of mass of rock falls related to Gumbel
extreme value theory

s Dimension defining slope roughness (m)

T Subscript for the component of velocity tangential to the slope; thickness of sand cush-
ion on rock fall sheds (m)

t Time (s)

v Relative velocity at contact point (m - s7)

vy  Normal component of relative velocity at contact point (m - s7')

vy Tangential component of relative velocity at contact point (m - s7!)

V, Velocity of centre of mass at impact time ¢ = 0 (m - s7!)

V; Velocity of centre of mass, final or restitution at time ¢ = f (m - s7!)

Vix  Normal component of impact velocity of centre of mass (m - s7)

V,r Tangential component of impact velocity of centre of mass (m + s7!)

Vi Normal component of final velocity of centre of mass (m - s7!)

Vi Tangential component of final velocity of centre of mass (m - ™)

W Weight of sliding block (N)

x Horizontal coordinate (m); exponent in time—force power relationship

2z Vertical coordinate (m)

o Angle of velocity vector relative to positive x-axis (degrees); location parameter
(Gumbel extreme value distribution)

By, By, B3 Inertial coefficients related to rotation of block during impact; scale parameter
(Gumbel extreme value distribution); cushion layer thickness/rock fall diameter
ratio

vy Factor of safety, fence design; density (kN - m=3)

8 Deformation or displacement or compression (mm)

3, 8, Displacement of mountain () and valley (v) sides of MSE banner

¢ Angle defining slope roughness (m)

n  Slope resistance factor used in velocity calculations

8, Impact angle relative to slope surface (degrees)

8, Final or restitution angle relative to slope surface (degrees)

K Slope gradient, trajectory calculations

A Reduction coefficient related to loss of mass during rock falls (m-'); Lamé parameter
for sand cushion (kN - m2)

i Friction coefficient at impact point

W Effective friction coefficient of slope surface

6, Uniaxial compressive strength of rock (MPa)

t,; Allowable rock-grout bond strength (kPa)

¢ Friction angle (degrees)

y  Dip angle-slope (s), face (f), plane (p), (degrees)

Q  Volume of rock fall (m3)

Q, Volume of rock fall at source (m3)

® Angular velocity (rad - )
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Chapter |

Rock Falls—Causes and Consequences

In mountainous terrain, infrastructure such as highways, railways, and power generation
facilities, as well as houses and apartment buildings, may be subject to rock fall hazards.
These hazards can result in economic losses due to service interruptions, equipment dam-
age, and loss of life. Rock fall hazards are particularly severe in areas with heavy precipita-
tion, frequent freeze-thaw cycles, and seismic events (TRB, 1996). These climatic conditions
exist, for example, in the Alps, on the West Coast of North America, and in Japan. In con-
trast, in Hong Kong, where temperatures are more mild but intense rainfall events occur,
rock fall risks can also be severe because of the high population density (Chau et al., 2003).

Protection against rock fall hazards can be provided by a variety of structures that are
now well proven as the result of extensive testing by the manufacturers of these systems and
their use in a wide variety of conditions, as discussed in Chapters 10 and 11. These protec-
tion structures include ditches that can be designed to reasonably well-defined criteria, and
will be more effective if they incorporate barriers with steep faces such as gabions or MSE
walls constructed from locally available materials. In addition, proprietary fence systems
have been developed that use various configurations of high-strength steel cables and wires.
In some high-hazard locations, it may be appropriate to construct reinforced concrete rock
sheds that incorporate energy-absorbing features such as flexible hinges and a cushioning
layer of sand or Styrofoam on the roof (Japan Road Assoc., 2000; Yoshida et al., 2007).

Design of protection measures requires data for two basic parameters of rock falls—impact
energy and trajectory. That is, information is required on the mass and velocity of falls to
determine the required energy capacity, and on impact locations and trajectory paths to deter-
mine the optimum location and dimensions of the barrier or fence. Development of these
design parameters requires the collection of relevant site data, followed by analysis of energies
and trajectories and then selection and design of the appropriate protection measure.

The design process for protection structures comprises the following steps as described
in this book:

e Topography and geology—The location of potential rock falls requires mapping to
identify source areas, and the gullies in which the falls may concentrate. Geological
studies will provide information on the likely size and shape of falls based on rock
strength and on discontinuity persistence and spacing (Chapter 1).

e Calibration of rock fall models—Because of the complexity of rock fall behavior, it is
useful to have data on actual rock falls with which to calibrate mathematical models.
Falls on slopes comprising rock, talus, colluvium, asphalt, and concrete have been
documented to provide this calibration data (Chapter 2).

* Trajectory analysis—The trajectory that the rock fall follows between impacts is a
parabolic path defined by gravitational acceleration, resulting in translational energy
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gain during the trajectory phase of the fall. Trajectories define the required height of
protection structures (Chapter 3).

* Impact mechanics—The impact process between a rock fall and the slope can be
defined by the theory of impact mechanics. Application of this theory to rock falls
enables calculation of changes in tangential, normal, and rotational velocities that
occur during impact, and the corresponding changes in kinetic and rotational energy
(Chapter 4).

¢ Coefficients of restitution—The basic parameters defining the changes in tangential
and normal velocities during impact are the corresponding coefficients of restitution.
These parameters are related, respectively, to friction on the contact surface and the
angle at which the body impacts the slope (Chapter 3).

¢ Energy losses during impact—The result of velocity changes during impact are corre-
sponding changes to the translational and rotational energies of the body. The energy
changes are the result of the frictional resistance to slipping/rolling in the tangen-
tial direction, and plastic deformation of the body and slope in the normal direction
(Chapter 6).

¢ Rock fall modeling—Computer programs have been developed (by others) to model

rock fall behavior and provide ranges of energies and trajectories for use in design. The

principles of modeling are discussed, and the case studies described in Chapter 2 have
been simulated in a widely used commercial rock fall modeling program to determine

the parameters required to reproduce these actual events (Chapter 7).

Selection of protection structures—Selection of the appropriate protection structure

for a site involves first having a rational means, such as decision analysis, of selecting

the required level of protection. Selection of rock mass values to use in design may
involve statistical methods to extrapolate limited field data on rock fall dimensions.

This analysis calculates the frequency of occurrence of design blocks with masses

larger than those observed in the field (Chapter 8).

e Design principles of protection structures—Optimizing the absorption of impact
energy by fences is related to attenuation in which the rock fall is deflected by the net,
and the energy is absorbed uniformly over the time of impact. These attributes will
limit impact forces generated in the structure (Chapter 9).

e Protection structures—Methods of protecting against rock falls include ditches, bar-
riers, fence, nets, and rock sheds. Each structure has a specific range of impact energy
capacity and suitability to the topography at the site, such as ditches, barriers, fences
(Chapter 10), and rock sheds (Chapter 11).

I.I SOURCE ZONES AND TOPOGRAPHY

Identification of rock fall source zones usually requires careful field investigations, possibly
involving examination of air photographs, helicopter inspections, and climbing the slopes.
Evidence of recent rock falls may include open tension cracks and fresh exposures on the
rock faces, impact marks on trees along the fall path, and accumulations of falls on the
lower part of the slope. It is also found that falls tend to collect in gullies, in the same way
that water flows down valleys. That is, falls from a large area of the slope will accumulate
at the base of gullies, a condition that can allow protection structures to be located only at
these topographic features.

Other factors influencing rock fall behavior are the slope angle and the slope material.

Figure 1.1 shows a typical slope configuration and the corresponding rock fall behavior on
four zones of the slope as follows:
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* Rock slope—On steep, irregular rock slopes, falls will have widely spaced impacts,
high-speed translational and rotational velocities, and high-angle trajectories.

¢ Colluvium slope—On slopes that are just steeper than the angle of repose (i.e., if
greater than 37 degrees for loose rock fragments), closely spaced impacts and shallow
trajectories will occur, but falls will not accumulate on the slope.

e Talus slope—Falls accumulating on talus slopes form at the angle of repose ranging
from about 37 degrees in the upper portion to 32 degrees near the base. Rock falls
undergo a natural sorting when they reach the talus with smaller fragments accu-
mulating near the top and larger ones reaching the base, such that the talus deposit
enlarges uniformly forming a cone-shaped deposit.

¢ Run-out zone—A few of the larger, higher energy blocks may move beyond the base
of the talus and on to a slope that is flatter than the talus. It has been found that the
maximum run-out distance for these blocks is defined by a line inclined at about 27.5
degrees from the base of the steep rock slope; this angle represents the rolling friction
coefficient of rock falls (Hungr and Evans, 1988). Within the run-out zone, rock falls
move in a series of closely spaced impacts or rolling action, which means rocks can be
readily stopped in this zone with shallow ditches or low fences.

The run-out zone as defined in Figure 1.1 has important implications for identifying haz-
ards zones below rock slopes, and the need to install protection measures and/or estab-
lish development exclusion zones. Objects at risk that may be found within run-out zones
include roads with low traffic volumes or golf courses that require little or no protection,
to houses with full-time occupants that require high-reliability protection measures such as
fences or barriers.

[—— Talus slope - y, = 32" to 37*
Rack slape — steep, Colluvium slope - no rock, I : :
ieregular rock face. falls accumulate on slopes most rock falls accumulate on

talus, with smaller blocks near

Widely spa'ced :Le?s:r l[:m a:gal;.of crest, larger blocks at base.
impacts, high ‘ — Clisel g s “a\cv;d im .acts {‘ Closely spaced impacts, low
trajectories, and high ¥ 5P PRSS; trajectories, occasional high
velocities, low trajectories.

trajectories due to impacts on
slope irregularities.

:

Run-out zone — on slope flatter
than talus, a few large blocks
travel beyond of talus to
limiting distance defined by the
base angle, y ~ 27.5",

Very closely spaced impacts,
rolling movement.

Figure I.I Typical slope configuration showing the relationship between slope angle and rock fall behavior.



