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Preface

Advanced mathematics that we refer to contains mainly calculus. Calculus is
the mathematics of motion and change. It was first invented to meet the
mathematical needs of the scientists of the sixteenth and seventeenth centuries,
and the needs that were mainly mechanical in nature. Differential calculus deals
with the problem of calculating rates of change. It enables people to define slopes
of curves, to calculate velocities and accelerations of moving bodies etc.. Integral
calculus deals with the problem of determining a function from information about
its rate of change. It enables people to calculate the future location of a body from
its present position and a knowledge of the forces acting on it, to find the areas of
irregular regions in the plane, to measure the lengths of curves, and so on. Now
advanced mathematics becomes one of the most important courses of the college
students in natural science and engineering.

The second edition of the book is revised based on implementation experience
of its first edition. The contents of the book are written by the authors as
follows: Professor Ping Zhu, Professor Jianhua Ywuan, Associate Professor
Xiaohua Li and Associate Professor Huixia Mo. All the Chapters of the book is
organized and proofread by Professor Wenbao Ai. The new edition is contributed
as logically and intuitively as possible. Its Chinese and English versions and a
corresponding exercise book form a family-united system, which is very useful to
the bilingual-teaching. For any errors remaining in the book, the authors would

be grateful if they were sent to: jianhuayuan(@ bupt. edu. cn.

Authors
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Chapter 7

Infinite Series

The infinite series [ JG%5 22 %% |, which will be introduced in this chapter, is an important
part of advance mathematics. The infinite series is closely related to the infinite sequence,
and it is a new form of expression of the limit of the infinite sequence. Then, it can be
studied by the theory of the limit of the series. With the establishment of the theorems for
the convergence and divergence of the series, the theory of infinite series has also promoted
the development of the limit theory. Infinite series provide a very useful tool for expressing
functions, studying properties of functions, and doing some approximate computations.

We will first introduce the concepts and properties of an infinite series with constant
terms [ B4 ] and then some convergence tests for series with constant terms. Later
we use this as a basic for the study of infinite series with function terms [ pR %% I 2% %% 1.
Finally, two important types of series of functions, namely power series [ 7% 2% %{ ] and
Fourier series [ {8 B -2 %], will be investigated.

7.1 Concepts and Properties of Series with Constant Terms

7.1.1 Examples of the Sum of an Infinite Sequence

Example 7. 1. 1(Length of perpendiculars) A right triangle ABC is given with S/ A=0,

4C=% and | AC| =b. CD is drawn perpendicular to AB, DE is drawn perpendicular to

BC, EF is drawn perpendicular to AB, and this process is continued indefinitely as shown in
Figure 7. 1. 1. Find the total length of all the perpendiculars

|CD|+ | DE|+ | EF|+ | FG| +---
in terms of / and 6.

Solution According to the assumption, the process of generating of perpendiculars is
continued indefinitely. It is easy to see that when /A=¢ and | AC| =0, the length of the
first perpendicular CD is

L,=|CD| =bsin 0;
The length of the second perpendicular DE is



L,=|DE|=bsin’0;

A
0
D
F
b H
[] [

81 E G ! B

Figure 7. 1.1

The length of the third perpendicular EF is
L,=|EF|=bsin’0;

The length of the nth perpendicular is
L,=bsin"""g.
Hence, the total length L of all the perpendiculars is
L=bsin -+ bsin® 0+ bsin® 0+ -+ +bsin”" "V g+ -+, Che sl )
|
Example 7. 1. 2(Problem of a ball with bounce) Drop a ball from H meters above a flat
surface. Each time the ball hits the surface after falling a distance i, it rebounds a distance
rh, where r is positive but less 1.
(1) Assuming that the ball continuous to bounce indefinitely, find the total distance of

the ball’s travel;
(2) Calculate the total time of the ball’s travel. (Use the fact that the ball falls %gtz

meters in ¢ seconds.)

Solution (1) The distance of the ball to fall down from height H to the ground is

So = H;
The distance of the ball to first bounce up and then fall down to the ground again is
Sl =i ZHI’;
Repeating the above process yields
Sz =2Hr* H

The distance of the ball to bounce up and fall down in the nth time is

S, =2Hr".
Therefore, the total distance of the ball travels up and down is
S=H-+2Hr+2Hr*+--+ 2Hr"+---. (7127



(2) By h:igtZ , the time of the first fall of the ball from height H to the ground is

2
T,= [2H
g

Similarly, the time for the ball to first bounce up from the ground to the height rH and then

fall down to the ground again is

2rH
In general, the time for the ball to bounce up and fall down in the nth time is

T1:2

T g, [OEH
5

Thus, the total time of the ball’s travel is

T— 2£?+2J2;H+2J225%H+---+2 /ng;HJr---. (7.1.9M

&

From the two examples, we encounter the problem of the “sum” of an infinite number
of values. Different from the sums with finite terms, the sums with infinite terms sometimes
make no sense, that is, it may not correspond to a number. Therefore, the first question is

what the meaning of the sum of an infinite sequence is.
7.1.2 Concepts of Series with Constant Terms

Definition 7. 1. 3(Infinite series [ TGZ52¢ % ]) Suppose that there is an infinite sequence
of numbers a, ya, sass***sa,s***, then we write its sum as
ai tastas+-+a,+--. (7.1.4)
Thus the expression of the sum is called a series of constant terms [ # %37 2244 ] or infinite series
[ T35 9 %5 | (simply a series [ 2¢%% ), where a, is called the general term [H i | of the series
or the nth term of the series.
The series of constant terms (7. 1.4) can be denoted by the sigma notation

Za,, or E a,.

n=1

As we know, addition of real numbers is a binary operation. This means that we really
add two numbers at a time. The only reason that 1+2-+3 makes sense as “addition” is that
we can group the numbers and then add them two at a time. In short, a finite sum of real
numbers always produces a real number, but an infinite sum of real numbers is something
else entirely. This is why we need a careful definition of infinite series.

It would be impossible to find a finite sum for series

1+24+3+4+-+n+---,
because if we start adding the terms, we get the cumulative sums 1,3,6,10,15,+++, and after
the nth term, we get n(n+1)/2, which becomes very large as n increases.

However, if we start to add the terms of the series

1 1 1 1 1
=+t Htetgt



we get the cumulative sums

As we add more and more terms, these sums become closer and closer to 1. In fact, by
adding sufficiently many terms of the series, we can make the sums as close as we like to 1
(See this by adding the areas in the “infinitely halved” unit square, Figure (7.1.2)). So, it

seems the sum of this infinite series is 1, namely

1 _ 1,1, .1, 1
”:15_2+4+8+16+ Tt L
n
1/8
1/16
1/2
1/4
Figure 7. 1. 2

In the following, we will use the similar idea to determine whether a series is convergent

or divergent.
i

Generally, the sum of the first n terms of the series S, = Za,,(n =1,2,++) is called the
k=1

nth partial sum [ {j 7 W #8423 A1 ] of the series or simply partial sum [ #543 #1]. The partial
sums of the series as follows

S, = a

S, = a; +a,

S; =a ta,ta;
S, =a +ta +a;++a, = Zak
k=1

form a sequence, which is called a sequence of partial sums of the series. We can use whether
or not the sequence of partial sums has a limit as n—>co to determine whether or not a general
series has a sum.

Definition 7. 1.2  If the sequence of partial sums {S,} converges, then we say that the

series Za,, converges [ Jit8{ ]. In this case, the limit of the sequence {S,}, lim S,= limz a, =S

n—>co n—=o0

n=1



is called the sum of the series, denoted by Za,, = S. Otherwise, we say that the series
n=1

diverges [ &% 11 ]. The convergence or divergence of a series can be referred to as convergence

property.

The difference between the sum and the partial sum of the series, R, = S—S, = Z a
k=nt+1
is called the nth remainder [ 4% | of the series.
Example 7. 1. 3(Geometric series [ JL{iJ2¢%%]) Discuss the convergence of the series of

equal ratios [ 45 2% %% ] (or geometric series)

a+ag+ag®+ - +ag™ = Djag" (a#0), (7.1.5)

n=0

where g is called the common ratio of the series.

Solution (1) When ¢=1, lim S,=Ilimna=co, so the series is divergent.

n—>cx 2>

(2) When g=—1, the given series become a—a+a—a-=+-+++(—1)""'a+---.
Since
a, nisodd,
Sll - -
0, nis even,
so the series is divergent.

(3) When | ¢ |4 1, the partial sum of the given series is

atagtag o tbagrt = Q=D
If |¢g|<<1, then lim S, = lima(%—:g)zliq, so the series is convergent and its sum is liq'

If [¢g|>1, then limSnzlimM

- noo 1

=co, so the series is divergent.
We summarize the results of the above example as follows.

The series (7. 1.5) is convergent when |q|<C1, and its sum is Zaq" =

n=0

1

geometric series is divergent. H

%q s if [g|>=1, the

Now, let’s solve the Examples 7. 1.1 and 7. 1. 2 by the results of Example 7. 1. 3.

For the perpendiculars of triangle of Example 7. 1. 1, since the expression (7. 1. 1) is just the
geometric series with ratio 7=sin @, the total length of all the perpendiculars is
L= lb:1;n80 ’

For the ball’s travel of Example 7. 1. 2, the expression (7. 1. 2) is just the geometric series
with ratio » (from the second term) and the expression (7. 1. 3) is just the geometric series with
ratio/r (from the second term), where 0<r<C1. So, the travel distance is

2Hr
1—7’

2H 2rH 1 2H , 1+/r
T=, /" ~+2 | = -
4 g 1—r g (1—J?) n

S=H+

and the travel time is




Example 7.1.4 Find the sum of the following series

1 1
”Z:;n(n+1)—1X2+2 gt +n(n+1>+
1

i : -1 1 —
Solution  Since @ =TT F Rl (k=1,2,+),
then the nth partial sum is

S":Ek(k—l—l) 2( k+1) 1771-}—1'

k=1 =

Since limS,, =1, then the series is convergent and its sum is 1. |

n—>oo

Example 7.1.5 Find the sum of the series 2

n=

1
2n*

Solution Using the formula arctan x — arctan y = arctan XY (x> 0,y >0),

1+ xy
we obtain that
a, = arctan L = arctan 1 __ arctan 1 (b =1,2,).
2k° 2k—1 2k +1
So,
S, = Earctan o
= (arctan 1 — arctan L —+ (arctan L_ arctan L ~+ +++ + (arctan L __ arctan L
( 3> ( 3 5) ( 2n—1 2n+l)
— o - S —1
= arctan 1 — arctan 1
: : _ T _ T
Since }lar‘r’l‘S,, =1 then 2, o R ]

Example 7.1.6 Express the repeating decimal 5. 232 323 -++as the ratio of two integers.

Solution The repeating decimal 5. 232 323 :+:can be written as the following,

23 23
> 23 5+100+100 +1003+100‘

N

Since m—l- 1232 —l—lgis + 1?)?(;1 +--+is a geometric series with ratio q:ﬁ. Therefore,
5. 232 323+ —5+100+100 1(2333+1g?8*+'"
_5+ﬁ( 100 1oo 10103+...)
—5+23 A0
=5+ 55— 59 .

7.1.3 Properties of Series with Constant Terms

From the above section, we see that the convergence of the series corresponds to the
limit of the sequence of its partial sums. Thus, the following properties of series follow

6



exactly those of sequences.

Theorem 7.1.1 If Za,, and Zb,, both converge and their sums are S and S respectively,

n=1 n=1

then

(1) (Properties of linear) For any a,B€ R, the series 2 (aa,+pb,) also converges and

n=1

3 ey F 0D = &Y oy 83, = af + 58
n=1 n=1 n=1

(2) If a, < b, for any n € No, then D) a, < D, b,.

n=1 n=1

Corollary 7. 1.1 If the series Ea,, is convergent, and the series Zb,, is divergent, then

n=1 n=1

the series 2 (a, +0b,) is divergent.

n=1

Example 7.1.7 Determine the convergence or divergence of the series 2 <% -+ cos mr).

n=1

Solution Since the series 2 on 18 convergent, and the series 2 cos nu= z (—D"is
n=1 n=1

n=1

. . ~ 1 .
divergent, then the series E (? + cos mc) is divergent. N
n=1
Theorem 7. 1. 2 If a series converges, then its sum is not changed when we add
arbitrarily some brackets among the terms of the series (provided that the order of the terms

is maintained).

Proof Let the sequence of the partial sums of a convergent series Ea,, be {S,}.

n=1

Adding arbitrarily some brackets among the terms of the series, we get a new series
(a; +a;+ - +a, )+ (a1 +ay+e + o +a,) + =+
f1 Ty e e ta, ) A (7.1.6)
Let the sequence of the partial sums of series (7.1.6) be {S,}. We have
S =5 ,5,=5, » 155 =S

that is, {S,} is a subsequence of {S,}. Since {S,} is convergent and limS, =S, so the

n—>co

(a

n_y ny,

5 608 5
n,

subsequence {S;} is convergent, too. And, limS,=S. |

n—>cx

Notice that the converse of the Theorem 7. 1. 2 may not be true. For example, the series
aAa—-bH+ad—H+Aa—D+-+ d—D+--=0+0+0++++0++-=0
converges, but the original series
1= 141 — Ifeet (=" o
is divergent.
Theorem 7. 1. 3( Adding or deleting terms) Deleting, adding or changing any finite numbers of

terms of the infinite series does not change the convergence or divergence of the series.

Theorem 7. 1. 4(Necessary condition for convergence) If a series Za,‘ converges, then

n=1



(1) lim a, = 0;

n—>co

(2) lim R, = 0, where R, is the nth remainder of the series Za,,.

n—>oc
n=1

Proof Let S,=a, t+a,ta;+-+a, be the nth partial sum of the series, and lim S, =S.

(1) Since a,=S,—S, ;, then
lima,=1lim(S,—S,_ 1) =S—S5=0;

n—>cx n—>oo

(2) SinceR, = >)a; = S—S, . then

k=nt1

lim R, = lim(S—S,.,) =S—S =0. n

n—>ox n—>cx

In Theorem 7. 1.4, (1) and (2) are both the necessary conditions for the convergent
series., However, the condition (1) is easy to check for us, so (1) can be used to verify the

divergence of a given series. Therefore, when we determine the convergence or divergence of the

series Za,, , we should check that lim a,=0 is true or not. If lima, does not exist or if lim a, %0,

= n—>cs n—> n—>cx
n=1

then the seriesZa,, is divergent. But, we should remember that lima, = 0 doesn’t mean that the

n—>o
n=1

series E a, is convergent,

n=1

Now, let us consider the series

1 1 1 1 1 1 1 1 1
1+?+7+'§+?+?+"'+7_I+7+"'+7+m+"'

n

. 1 L. .
The nth term of the series a, =——>0 (n—>c0), but the series is divergent. In fact, if the
n

series is convergent, then
1 1 1 1 1 il 1 1 1
() (s ts) T () Tara

is convergent, too. But the sum of the terms in every bracket is 1 for the new series, so the

+ e

given series is divergent.
Example 7.1.8 Determine the convergence or divergence of the following series.
1 — 1y, (2 :17' .
( HZ; ( ) y ”Z; dn* — 3

Solution (1) Leta, = (—1)"™". It is easy to see that lima,=lim(—1)"""doesn’t exist,
so the series diverges by Theorem 7. 1. 4.
2 i

(2) Leta, = h It is easy to see that }ijga,, :I%ir?4772_3:%7é0, so the series

diverges by Theorem 7. 1. 4. |

Using the Cauchy convergence criteria to determine the convergence or divergence of the

nth partial sum {S,}, then we can obtain the Cauchy convergence criteria of the series.

“Theorem 7. 1. 5(Cauchy convergence criteria) The series Za is convergent if and only
n=1



