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Preface

This book is about turbulence in incompressible fluids.

We have asked people in the street what the word “turbulence’ means for them.
One woman replied: “Turbulence makes me think of the sea, because it makes one
feel what is invisible, what cannot be predicted.” More generally, people answered
giving only one word, such as disorder, aircraft, clouds, weather forecast, power, and
chemistry. Therefore, turbulence is something that anyone has experienced in one
way or another. Mathematicians will answer that turbulence is about fluids, mixing,
chaos, and connected scales. It may be a source of inspiration for painters or poets.
One may attempt to control it for technological progress. It is however a source
of concern because of its impact on environment and human life, the most critical
environmental challenge being climate change.

Although understanding turbulence is of primary importance, there is no mathe-
matical definition of it, and many physical mechanisms governing turbulent motions
remain unknown. One could say that there is a chance for mankind to understand
quantum physics someday, but not turbulence. Nevertheless, it is possible to simu-
late by means of computers some features of turbulent motions: weather forecasts
are rather accurate over 5days, the mean Gulf Stream path can be calculated,
numerical flow simulations around an aircraft wing are in good agreement with
experimental data, etc. All these numerical simulations are performed by means of
“turbulence models.”

Turbulence models aim to simulate statistical means of turbulent flows or some
of their scales. It is however estimated that an accurate computation of all scales
of such flows will be possible only by the end of the twenty-first century, if the
improvement of the computational resources continues at the same rate.

We do not pretend to give a definition of what turbulence is. Our goal is to provide
a comprehensive and innovative presentation of turbulence models, at the crossroads
of modeling and mathematical and numerical analysis, including all these aspects in
one single book, in complementarity with the other reference manuals in the field.

This book is the synthesis of almost 20 years of thoughts and works about
turbulence models, through the meeting of a mathematician with a numerical
analyst, leading to a long-term collaboration and friendship. This resulted in
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several joint research works, which gave us the opportunity to check that the
complementarity of these specialities can be quite fruitful. Finally, it led us to the
project of jointly writing a book from a comprehensive point of view on one of
the most challenging scientific problems, as is the understanding of turbulence: we
deliver here what we are able to understand from turbulence.

In mathematics, authors are always listed in alphabetical order, which is the case
of this book.

Seville, Spain Tomas Chacén Rebollo
Rennes, France Roger Lewandowski
January 2014
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Chapter 1
Introduction

Understanding turbulence is one of the oldest and most challenging scientific
problems. Since the early works of Boussinesq and Reynolds in the late nineteenth
century that formalized the basic characteristics of turbulent flows, the analysis
of the extremely complex behavior of turbulence has raised the interest of many
researchers. The issue of what is “turbulence” is still far from being solved, although
some facts can be deduced from observations and experiments. Turbulent flows have
a huge impact in human life, from weather forecasting to freshwater supply, energy
generation, navigation, biological processes and so on.

Numerical simulation of turbulence is thus of primary importance to improve
human life in many ways. Classical fluid mechanics establishes that the motion of
a viscous fluid is governed by the Navier—Stokes equations, which in theory should
be appropriate to perform numerical simulations of turbulent flows.

However, a turbulent flow is a highly irregular system, characterized by chaotic
property changes involving a wide range of scales in nonlinear interaction with each
other. These features yield a high computational complexity, which makes today
direct numerical simulations of turbulent flows from the Navier-Stokes equations
impossible. This is why turbulence models are introduced, in order to reduce this
computational complexity.

Besides experiments and physics, mathematical modeling and analysis play a
central role in the study of turbulent flows. Mathematics provide a permanent sup-
port to build turbulent models for weather forecasting and meteorology. oceanog-
raphy, climatology, and environmental and industrial applications. Industrial flow
softwares (Ansys-Fluent, Comsol, Femap....) are deeply based upon mathematical
and numerical analysis.
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