OXFORD HANDBOOK OF APPLIED DENTAL SCIENCES

- Relevant to dental qualifying exams
- International team of contributors
- Relates the medical sciences to a clinical dental background

EDITED BY Crispian Scully, CBE

Oxford/ Handbook of Applied Dental Sciences

Edited by

Crispian Scully CBE
University College London

With contributions from:

Haytham Al-Bayaty
Michael J. Aldred
Baruch Arensburg
Robert B. Ashman
Jeremy Bragg
Bill Barrett
Agnès Bloch-Zupan
Charlotte Feinmann
Sabrina Forcella
Brian Henderson
Richard Jordan
Christopher Lavelle
Eitan Lavon
Antonio Mata

Robin Matthews
Maria Fernanda Mesquita
Malcolm M. Musiker
Toby Newton-John
José Luis Relova-Quinteiro
Lakshman P. Samaranayake
Gregory J. Seymour
Peter M. Smith
Guiseppe Spoto
Irma Thesleff
Michael Wilson
Susanne Wish-Baratz
Andrew Yeudall

OXFORD

UNIVERSITY PRESS

Great Clarendon Street, Oxford OX2 6DP

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide in

Oxford New York

Auckland Bangkok Buenos Aires Cape Town Chennai Dar es Salaam Delhi Hong Kong Istanbul Karachi Kolkata Kuala Lumpur Madrid Melbourne Mexico City Mumbai Nairobi São Paulo Shanghai Singapore Taipei Tokyo Toronto

with an associated company in Berlin

Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries

Published in the United States by Oxford University Press Inc., New York

© Oxford University Press, 2002

The moral rights of the author have been asserted Database right Oxford University Press (maker)

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above

You must not circulate this book in any other binding or cover and you must impose this same condition on any acquirer

A catalogue record for this title is available from the British Library

Library of Congress Cataloguing in Publication Data Oxford handbook of applied dental sciences / edited by Crispian Scully. p. cm.

Dentistry-Handbooks, manuals, etc. 2. Dentistry-Examinations, questions, etc. 1.
 Scully, Crispian.

RK56 .O95 2002 617.6-dc21

2002071532

ISBN 0 19 851096 9 10 9 8 7 6 5 4 3 2 1

Typeset by EXPO Holdings, Malaysia Printed in China on acid-free paper

Oxford Handbook of Applied Dental Sciences

Oxford University Press makes no representation, express or implied, that the drug dosages in this book are correct. Readers must therefore always check the product information and clinical procedures with the most up to date published product information and data sheets provided by the manufacturers and the most recent codes of conduct and safety regulations. The authors and the publishers do not accept responsibility or legal liability for any errors in the text or for the misuse or misapplication of material in this work.

Preface

The twentieth century saw impressive advances in science and information access and transfer, such that not only has the understanding of health and disease increased enormously, but the speed of transfer of the new knowledge into the clinical environment has accelerated in an almost incredible way.

Thirty years ago, when I qualified in biochemistry, having acknowledged the growing importance of the understanding of cellular physiology and molecular biology to clinical practice, I could not have foreseen the considerable changes ahead. Though there had been recognition of the importance of DNA, and the dawn of DNA technology, few could have imagined the rapid development of immunology (and the catastrophic advent of AIDS), the growth of molecular biology, the development of DNA technology, the dawn of information technology or the Human Genome Project-developments that have opened the way for tremendous leaps in our understanding of the biological sciences, which have (and will continue to) enhanced diagnosis, prevention, and treatment of disease. New words, acronyms, and abbreviations which could not have been foreseen, are now in daily usage. Examples include PCR, IT, ELISA, HIV, HPV, Western blot, CD4, p53, prions, DNA chips, gene therapy, recombinants, etc. Who indeed, could have predicted frazzle, or sonic hedgehogs!?

There have been many significant advances in all fields but none more dramatic and exciting than those in the fields of biochemistry, immunology, molecular biology, and now genomics, and these have overflowed into all other aspects of clinical science and changed the face of all disciplines.

The main aim of this handbook is to demonstrate why modern medical science is so relevant to clinical dental practice. Dental staff are increasingly obliged to understand the language, fundamentals, and applications of these sciences. To this end, this book aims to outline the preclinical sciences as applied to dentistry, relevant to dental qualifying examinations such as BDS and DDS and, in some countries, to higher examinations such as MFDS.

The authors are an international team of experts, gathered from most continents because of their experience of dental education and research in the applied basic sciences, and their willingness to participate in this project which was carried out solely by electronic mail. For this reason, and the fact that of the 300 million people worldwide who speak English it is American English that is the major form (Bryson B. (1990). Mother Tongue. Penguin Books, London), we have adopted American spelling in this book.

The information is presented in 58 chapters, assembled in eight parts covering relevant anatomy and development, pain and behavioral sciences, biochemistry, genomics, immunology, microbiology, pathology, and physiology. Lack of space has precluded the inclusion of other relevant sciences such as medicine, surgery, informatics, and pharmacology. The advances in the sciences, the changed content of subjects, and the relevance to dental clinical practice are well illustrated and the reader may be surprised to find that traditional boundaries between the biological sciences overlap and are increasingly blurred. Inevitably this leads to a certain amount of repetition, which we trust the reader will find useful.

CS London August 2002

List of contributors

Editor

Professor Crispian Scully CBE, MD, PhD, MDS, MRCS, FDSRCPS, FDSRCS, FFDRCSI, FDSRCSE, FRCPath, FmedSci, Eastman Dental Institute for Oral Health Care Sciences, University College London, London WC1X 8LD, UK.

Contributors

- Haytham Al-Bayaty, The University of the West Indies, Trinidad
- Michael J. Aldred, Department of Dentistry, Royal Children's Hospital, Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Australia
- Baruch Arensburg, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel 69–978
- Robert B. Ashman, University of Queensland, Brisbane, Australia
- Jeremy Bagg, Department of Clinical Microbiology, Glasgow Dental Hospital and School, 378 Sauchiehall Street, Glasgow G2 3JZ, UK
- Bill Barrett, Oral and Maxillofacial Pathology, Eastman Dental Institute, University College London, London WCIX 8LD, UK
- Agnès Bloch-Zupan, Paediatric Dentistry, Eastman Dental Institute, University College London, London WC1X 8LD, UK
- Charlotte Feinmann, Behavioural Sciences and Dentistry, Eastman Dental Institute, University College London, London WC1X 8LD, UK
- Sabrina Forcella, Department of Applied Sciences of Oral and Dental Diseases, University of Chieti 66013 Italy
- Brian Henderson, Cellular Microbiology, Eastman Dental Institute, University College London, London WC1X 8LD, UK
- Richard Jordan, Department of Stomatology and Pathology, University of San Francisco, California, USA
- Christopher Lavelle, University of Manitoba, Canada
- Eitan Lavon, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel 69-978
- Antonio Mata, University of Lisbon, Portugal

- Robin Matthews, The University of the West Indies, Trinidad
- Maria Fernanda Mesquita, University of Lisbon, Portugal
- Malcolm M. Musiker, North Coast Dental Group, University of Rochester, New York 14167, USA
- Toby Newton-John, Behavioural Sciences and Dentistry, Eastman Dental Hospital, London WC1X 8LD, UK
- José Luis Relova-Quinteiro, Departmento de Fisiología, Facultad de Medicina y Odontologia, University of Santiago de Compostela, Spain
- Lakshman P. Samaranayake, Oral Biosciences, Faculty of Dentistry, The University of Hong Kong, China
- Gregory J. Seymour, University of Queensland, Brisbane, Australia
- Peter M. Smith, University of Liverpool, UK
- Giuseppe Spoto, Department of Applied Sciences of Oral and Dental Diseases, University of Chieti 66013, Italy
- Irma Thesleff, Developmental Biology Program, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
- Michael Wilson, Microbiology, Eastman Dental Institute, University College London, London WC1X 8LD, UK
- Susanne Wish-Baratz, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel 69-978
- Andrew Yeudall, Molecular Carcinogenesis Group, Head and Neck Cancer Program, Guy's King's and St Thomas' School of Medicine and Dentistry, King's College London, Guy's Hospital, St Thomas Street, London SE1 9RT, UK

List of abbreviations

ACh	Acetylcholine
ACTH	Adrenocorticotropic hormone
AD	Activation domain
ADCC	Antibody-dependent cellular cytotoxicity
ADH	Antidiuretic hormone
ADJ	Amelodentinal junction
ADP	Adenosine diphosphate
AP	Alkaline phosphatase
APC	Antigen-presenting cell
ASOT	Antistreptolysin O titre
ASR	Age-standardized mortality rate
AST	Aspartate aminotransferase
ATLPL	Adipose tissue lipoprotein lipase
ATP	Adenosine triphosphate
AV	Atrioventricular
BD	Binding domain
BMI	Body mass index
ВМР	Bone morphogenetic protein
BMR	Basal (resting) metabolic rate
BMT	Bone marrow transplant
cADPr	Cyclic ADP ribose
cAMP	Cyclic adenosine monophosphate
CCK	Cholecystokinin
CGH	Comparative genomic hybridization
CMP	Cyclic guanosine monophosphate
CLIP	Class II invariant chain peptide
CN	Cranial nerve(s)
CNS	Central nervous system
CO	Carbonmonoxide
CoASH	Coenzyme A
COX	Cyclo-oxygenase
CREB	cAMP response element binding proteins
CRP	C-reactive protein

xviii

CSF	Cerebrospinal fluid
CSF	Colony stimulating factor
CTR	Common tendinous ring
CVS	Cardiovascular system
DAG .	Diacylglycerol
DEJ	Dentinoenamel junction
1,25-DHCC	1,25-dihydroxycholecalciferol
DHLNL	Dehydrodihydroxy-lysinonorleucine
EAM	External acoustic (auditory) meatus
EBP	Elastin binding protein
ECM	Extracellular matrix
EGF	Epidermal growth factor
ELISA	Enzyme linked immunosorbent assay
ЕМТ	Epitheliomesenchymal transition
EPSP	Excitatory postsynaptic potential
ES	Embryonic stem
ESR	Erythrocyte sedimentation rate
FAK	Focal adhesion kinases
FGF	Fibroblast growth factor
FITC	Fluorescein isothiocyanate
FSH	Follicle stimulating hormone
GABA	γ-aminobutyric acid
GAGs	Glycosaminoglycans
GALT	Gut-associated lymphoid tissue
GCF	Gingival crevicular fluid
GH	Growth hormone
GI	Gastrointestinal
GVHD	Graft versus host disease
GTP	Guanosine triphosphate
HAART	Highly active antiretroviral therapy
HDL	High-density lipoprotein

Human papillomavirus HPV Horseradish peroxidase - HRP

HERS

HLA

HLNL

hnRNA

HE

此为试读,需要完整PDF请访问: www.ertongbook.com

Hematoxylin-eosin

Hertwig's epithelial root sheath

Human leukocyte antigen

Hydroxy-lysinonorleucine

Heterogeneous nuclear RNA

HSCT	Hematopoietic stem cell transplant
ICAMs	Intercellular cell adhesion molecules
IDL	Intermediate-density lipoprotein
IEE	Inner enamel epithelium
Ig	Immunoglobulin
IL-1	Interleukin 1
iNOS	Inflammatory nitric oxide synthase
InsP3	Inositol 1,4,5-trisphosphate
IP3	Inositol triphosphate
IPSP	Inhibitory postsynaptic potential
IPTG	Isopropylthiogalactoside
IV	Intervertebral (intravenous)
JAK	Janus activated kinase
K _s	Solubility constant
LDL	Low-density lipoprotein
LH	Luteinizing hormone
LOD	Logarithm of odds for linkage
LOH	Loss of heterozygosity
LPS	Lipopolysaccharide
MAC	Membrane attack complex
MAI	Mycobacterium avium-intercellulare
MALT	Mucosa-associated lymphoid tissue
MAPK	Mitogen activated protein kinases
MCV	Mean corpuscular volume
MDR	Multi-drug resistant
MHC	Major histocompatibility complex
MMP	Matrix metalloproteinases
mRNA	Messenger RNA
NAD	Nicotinamide adenine dinucleotide
NADH	Nicotinamide adenine dinucleotide (reduced form)
NADP	Nicotinamide adenine dinucleotide phosphate
NADPH	Nicotinamide adenine dinucleotide phosphate (reduced form)
NANA	N-acetylneuraminic acid
NANBH	Non-A, non-B hepatitis
NO	Nitric oxide
NTM	Non-tubercular mycobacteria
OEE	Outer enamel epithelium

P	Phosphate group
Pi	Inorganic phosphate group
PP;	Inorganic pyrophosphate
PCF	Peri-implant crevicular fluid
PCP	Pneumocystis carinii pneumonia
PCR	Polymerase chain reaction
PDGF	Platelet-derived growth factor
PDL	Periodontal ligament
PGE	Prostaglandin E
PKA	Protein kinase A
PLC	Phospholipase C
PMNs	Polymorphonuclear leukocytes
PP-H	Phosphophorin
PRP	Proline-rich proteins
PRPP	5-Phosphoribosyl-1-pyrophosphate
PTH	Parathormone
RCA	Regulator of complement activation
RER	Rough endoplasmic reticulum
RFLP	Restriction fragment length polymorphism
SA	Sinoatrial
SAB	Sabouraud dextrose agar
SAGE	Serial analysis of gene expression
SCM	Sternocleidomastoid
SLN	Superior laryngeal nerve
STAT	Signal transducers activators of transcription
STS	Sequence tagged site
TGF	Transforming growth factor
TGF- β	Transforming growth factor $oldsymbol{eta}$
TKR	Tyrosine kinase receptors
TMJ	Temporomandibular joint
TRAP	Tyrosine-rich amelogenin protein
tRNA	Transfer RNA
TSH	Thyroid stimulating hormone
VIP	Vasoactive intestinal peptide
VLDL	Very low-density lipoprotein
VNTRs	Variable number of tandem repeats
vWF	von Willebrand factor

Contents

List	of contributors	xv
List	of abbreviations	xvi

Part 1

Development and anatomy

1 Craniofacial development 3

Early development 4

Later development 7

Mechanisms of craniofacial growth control 10

2 General anatomy 11

Skin 15

The skeletal system 16

The nervous system 18

The cardiovascular system 22

Bone 26

3 Anatomy of the head and neck 35

The scalp 36

The face 37

The temporal region 40

The ear 42

The eye 45

The nasal cavity 48

4 Oral anatomy: the oral cavity, salivary glands, and the temporomandibular joint 51

The palate 54

Floor of the mouth 56

The tongue 57

The salivary glands 60

The temporomandibular joint (TMJ) 63

5 The neck 67

Deep fascia 68

The triangles of the neck 73

The cervical nerve plexus 75

Midline structures of the neck 76

The thyroid gland 80

The pharynx 81

6 Teeth 85

Tooth structure 87

Enamel 88

Dentin-pulp complex 93

Pulp 98

Dentin sensitivity 99

Cementum 100

Periodontal ligament (PDL) 101

Alveolar process 107

7 Odontogenesis 109

Stages in tooth development 110

Root formation 115

Pulp formation 116

8 Tooth eruption 117

Mechanisms of tooth eruption 121

Part 2

Physiology

9 Cell physiology 125

Introduction 126

The membrane potential 128

Active transport 129

Exocytosis 130

Intracellular signalling 131

10 Neurophysiology 133

Basic mechanisms 135

Action potential 136

The synapse 139

Sensory transduction 142

Sensory receptors in oral structures 144

11 Mastication 149

Muscles of mastication 151

Chewing cycles 152

Control of mastication 153

Forces generated by masticatory muscles 156

12 Salivary gland function 157

Saliva 159

Function of saliva 161

Xerostomia 163

13 Swallowing 165

Neural control of swallowing 169

Suckling 170

. 14 Digestion and absorption 171

Stomach 175

Intestines 178

The exocrine pancreas 181

Bile 183

15 Liver 185

16 Kidneys 189

Ultrafiltration 191

Renal tubular excretion and reabsorption 192

Renal (kidney) functions 193

17 Vitamins 195

18 Blood 199

Hematopoiesis 201

Red blood cells (RBCs) 202

White blood cells (leukocytes) 204

Platelets 204

Hemostasis 206

Complement 208

19 Cardiovascular system 209

Cardiac function 211

Cardiac output 212

Cardiac malfunction 213

Blood pressure 214

20 Respiratory system 219

Lung function 220

Oxygen and carbon dioxide transport 221

Neural control of respiration 222

21 Endocrine system 223

Growth hormone (GH) (somatotrophin) 225

Adrenocorticotropic hormone (ACTH) (corticotrophin) 226

Luteinizing (LH) and follicle stimulating hormone (FSH) 227

Thyroid stimulating hormone (TSH) 228

Melanocyte stimulating hormone 229

Antidiuretic hormone (ADH) (vasopressin) 230

Oxytocin 231

Melatonin 232

Thyroid hormone (thyroxine, tri-iodothyronine) 233

Parathyroid hormone 234

Vitamin D 235

Calcitonin 236

Epinephrine (adrenaline) and norepinephrine (noradrenaline) 237

Glucocorticoids 238

Mineralocorticoids 239

Insulin 240

Glucagon 241

Somatostatin 242

Estrogen 243

Progesterone 244

Testosterone 245

Gastrin 246

Secretin 247

Cholecystokinin 248

22 Bone 249

Bone cells 252

Bone formation (osteogenesis) 255

Bone modeling and remodeling 256

Bone fracture repair 256

Bone mineral homeostasis 258

Hormonal control of calcium and bone metabolism 260

Orthodontic tooth movement 262

23 Wound healing 265

Part 3

Biochemistry

24 Molecular architecture 271

Proteins 272

Nucleic acids 274

Carbohydrates 277

Lipids 279

Enzymes 280

25 Protein expression, analysis, and proteomics 283

Amino acid biosynthesis 285

Direction of protein synthesis 286

Genetic code 287

Protein synthesis 289

Protein function 291

Proteins in health and disease 294

Examining protein expression in cells and tissues 295

Expression of exogenous proteins in cultured cells 297

Protein-protein interactions 300

Analysis of protein function in vivo-transgenic approaches 301

Clinical aspects of protein analysis 302

Computer-based analysis of expression patterns—bioinformatics 303

Proteomics 305

26 Metabolism 307

Metabolism of carbohydrates 309

Metabolism of lipids 311

Metabolism of nucleic acids 313

Metabolism of proteins and amino acids 314

27 Cell signaling 317

Features of cell signaling 319

Types of cell signaling 320

Types of signal 321

Cell signaling pathways 322

28 Cells and tissues 325

Epithelial tissues 326

Connective tissue 328

Basement membrane 333