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Preface

Every author aspiring to write a book should address two fundamental
questions: (i) Who is the targeted audience? (ii) What does he wish to
say to them? In the world of literature, it is often said that every novel is
autobiographical to some extent or another. Adapting this maxim to the
current situation, I would say that every book I have ever written has been
aimed at readers who are in the situation in which I found myself at the time
that 1 embarked on the book-writing project. To put it another way, every
book I have written has been an attempt to make it possible for my readers
to circumvent some of the difficulties that I myself faced when learning a
subject that was new to me.

In the present instance, for the past few years I have been interested in the
broad area of computational biology. With the explosion in the sheer quan-
tity of biological data, and an enhanced understanding of the fundamental
mechanisms of genomics and proteomics, there is now greater interest than
ever in this topic. I got very interested in hidden Markov processes (HMPs)
when I realized that several researchers were applying HMPs to problems
in computational biology. Thus, after spending virtually my entire research
career in blissful ignorance of all matters stochastic, I got down to try to
learn something about Markov processes and HMPs. At the same time, 1
was trying to learn enough basic biology, and to read the literature on the
applications of Markov and hidden Markov methods in computational biol-
ogy. The Markov process literature and the computational biology literature
each presented its own sets of problems. The choices regarding the level and
contents of the book have been dictated primarily by a desire to enable my
readers to learn these topics more easily than I could.

Hidden Markov processes (HMPs) were introduced into the statistics liter-
ature as far back as 1966 [12]. Starting in the mid 1970s [9, 10], HMPs have
been used in speech recognition, which is perhaps the earliest application of
HMPs in a nonmathematical context. The paper [50] contains a wonderful
survey of most of the relevant theory of HMPs. In recent years, Markov
processes and HMPs have also been used in computational biology. Popular
algorithms for finding genes from a genome are based either on Markov mod-
els, such as GLIMMER and its extensions [113, 36|, or on hidden Markov
models, such as GENSCAN (25, 26]. Methods for classifying proteins into
one of several families make use of a very special type of hidden Markov
model known as a “profile” hidden Markov model. See [142] for a recent
survey. Finally, the BLAST algorithm, which is universally used to carry
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out sequence alignment in an efficient though probabilistic manner, makes
use of some elements of large deviation theory for i.i.d. processes. Thus
any text aspiring to provide the mathematical foundations of these methods
would need to cover all of these topics in mathematics.

Most existing books on Markov processes invariably focus on processes
with infinite state spaces. Books such as [78, 121] restrict themselves to
Markov processes with countable state spaces, since in this case many of
the technicalities associated with uncountable state spaces disappear. From
a mathematician’s standpoint, the case of a finite state space is not worth
expounding separately, since the extension from a finite state space to a
countably infinite state space usually “comes for free.” However, even the
“simplified” theory as in [121] is inaccessible to many if not most engineers,
and certainly to most biologists. A typical engineer or mathematically in-
clined biologist can cope with Markov processes with finite state spaces
because they can be analyzed using only matrices, eigenvalues, eigenvectors,
and the like. At the same time, books on Markov processes with finite state
spaces seldom go beyond computing stationary distributions, and generally
ignore advanced topics such as ergodicity, parameter estimation, and large
deviation theory. Yet, as I have stated above, these “advanced” ideas are
used in computational biology, even if this fact is not always highlighted.
There are some notable exceptions such as [116] that discusses ergodicity of
Markov processes, and [100] that discusses parameter estimation; but nei-
ther of these books discusses large deviation theory, even for i.i.d. processes,
let alone for Markov processes.

Thus the current situation with respect to books on Markov processes can
be summarized as follows: There is no treatment of “advanced” notions using
only “elementary” techniques, and in an “elementary” setting. In contrast,
in the present book the focus is exclusively on stochastic processes assuming
values in a finite set, so that technicalities are kept to an absolute minimum.
By restricting attention to Markov processes with finite state spaces, I try
to capture most of the interesting phenomena such as ergodicity and large
deviation theory, while giving elementary proofs that are accessible to anyone
who knows undergraduate-level linear algebra.

In the area of HMPs, most of the existing texts discuss only the com-
putation of various likelihoods, such as the most likely state trajectory
corresponding to a given observation sequence (also known as the Viterb
algorithm), or to the determination of the most likely parameter set for
a hidden Markov model of a given, prespecified order (also known as the
Baum-Welch algorithm). In contrast, very little attention is paid to realiza-
tion theory, that is, constructing a hidden Markov model on the basis of its
statistics. Perhaps the reason is that, until recently, realization theory for
hidden Markov processes was not in very good shape, despite the publica-
tion of the monumental paper [6]. In the present book, I have attempted
to remedy the situation by including a thorough discussion of realization
theory for hidden Markov processes, based primarily on the paper [133].

Finally, I decided to include a discussion of large deviation theory for both
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i.i.d. processes as well as Markov processes. The material on large deviation
theory for i.i.d. processes, especially the so-called method of types, is used
in the proofs of the BLAST algorithm, which is among the most widely used
algorithms in computational biology, used for sequence alignment. I decided
also to include a discussion of large deviation theory for Markov processes,
even though there aren’t any applications to computational biology, at least
as of now. This discussion is a compendium of various results that are
scattered throughout the literature, and is based on the paper [135].

At present there are several engineers and mathematicians who would
like to contribute to computational biology and suggest suitable algorithms.
Such persons face some obvious difficulties, such as the need to learn (I am
tempted to say “memorize”) a great deal of unfamiliar terminology. Math-
ematicians are accustomed to a “reductionist” approach to their subject
whereby everything follows from a few simply stated axioms. Such persons
are handicapped by the huge differences in the styles of exposition between
the engineering/mathematics community on the one hand and the biology
community on the other hand. Perhaps nothing illustrates the terminology
gap better than the fact that the very phrase “reductionist approach” means
entirely different things to mathematicians and to biologists. To mathemati-
cians reductionism means reducing a subject to its core principles. For in-
stance, if a ring is defined as a set with two binary associative operations etc.,
then certain universal conclusions can be drawn that apply to all rings. In
contrast, to biologists reductionism means constructing the simplest possible
exemplar of a biological system, and studying it in great detail, in the hope
that conclusions derived from the simplified system can be extrapolated to
more complex exemplars. Or to put it another way, biological reductionism
is based on the premise that a biological system is merely an aggregation of
its parts, each of which can be studied in isolation. The difficulties with this
premise are obvious to anyone familiar with “emergent behavior,” whereby
complex systems exhibit behavior that has not been explicitly programmed
into them; but despite that, reductionism (in the biological sense) is widely
employed, perhaps due to the inherent complexity of biological systems.

Computational biology is a vast subject, and is constantly evolving. In
choosing topics from computational biology for inclusion in the book, I re-
stricted myself to genomics and proteomics, as these are perhaps the two
aspects of biology that are the most “reductionist” in the sense described
above. Even within genomics and proteomics, I have restricted myself to
those algorithms that have a close connection with the Markov and HMP
theory described here. Thus I have omitted any discussion of, to cite just one
example, neural network-based methods. Readers wishing to find an ency-
clopedic treatment of many aspects of computational biology are referred to
[11, 53]. But despite laying out these boundary conditions, I still decided not
to attempt a thorough and up-to-date treatment of all available algorithms
in genomics and proteomics that are based on hidden Markov processes. The
main reason is that the actual details of the algorithms keep changing very
rapidly, whereas the underlying theory does not change very much over time.
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For this reason, the material in Part 3 of the book on computational biology
only presents the flavor of various algorithms, with up-to-date references.

I hope that the book would not only assist biologists and other users of
the theory to gain a better understanding of the methods they use, but also
spur the engineering and statistics research community to study some new
and interesting research problems.

I would like to conclude by dedicating this book to the memory of Jan
Willems, who passed away just a few months before it was finished. Jan was
a true scholar, a personal friend, and a role model for aspiring researchers
everywhere. With his passing, the world of control theory is infinitely poorer.
Dedicating this book to him is but a small recompense for all that I have
learned from him over the years. May his soul rest in peace!

M. Vidyasagar
Dallas and Hyderabad
December 2013
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Chapter One

Introduction to Probability and Random Variables

1.1 INTRODUCTION TO RANDOM VARIABLES

1.1.1 Motivation

Probability theory is an attempt to formalize the notion of uncertainty in the
outcome of an experiment. For instance, suppose an urn contains four balls,
colored red, blue, white, and green respectively. Suppose we dip our hand
in the urn and pull out one of the balls “at random.” What is the likelihood
that the ball we pull out will be red? If we make multiple draws, replacing the
drawn ball each time and shaking the urn thoroughly before the next draw,
what is the likelihood that we have to make at least ten draws before we draw
a red ball for the first time? Probability theory provides a mathematical
abstraction and a framework where such issues can be addressed.

When there are only finitely many possible outcomes, probability theory
becomes relatively simple. For instance, in the above example, when we draw
a ball there are only four possible outcomes, namely: {R, B, W, G} with the
obvious notation. If we draw two balls, after replacing the first ball drawn,
then there 42 = 16 possible outcomes, represented as { RR, ..., GG}. In such
situations, one can get by with simple “counting” arguments. The counting
approach can also be made to work when the set of possible outcomes is
countably infinite.! This situation is studied in Section 1.3. However, in
probability theory infinity is never very far away, and counting arguments
can lead to serious logical inconsistencies if applied to situations where the
set of possible outcomes is uncountably infinite. The great Russian math-
ematician A. N. Kolmogorov invented axiomatic probability theory in the
1930s precisely to address the issues thrown up by having uncountably many
possible outcomes. Subsequent developments in probability theory have been
based on the axiomatic foundation laid out in [81].

Example 1.1 Let us return to the example above. Suppose that all the
four balls are identical in size and shape, and differ only in their color. Then
it is reasonable to suppose that drawing any one color is as likely as drawing
any other color, neither more nor less. This leads to the observation that
the likelihood of drawing a red ball (or any other ball) is 1/4 = 0.25.

Example 1.2 Now suppose that the four balls are all spherical, and that

1Recall that a set S is said to be countable if it can be place in one-to-one correspon-
dence with the set of natural numbers N = {1,2,...}.
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their diameters are in the ratio 4 : 3 : 2 : 1 in the order red, blue, white,
and green. We can suppose that the likelihood of our fingers touching and
drawing a particular ball is proportional to its surface area. In this case, it
follows that the likelihoods of drawing the four balls are in the proportion
4%2:32:22:1%20r 16:9:4: 1 in the order red, blue, white, and green. This
leads to the conclusion that

P(R) = 16/30, P(B) = 9/30, P(W) = 4/30, P(G) = 1/30.

Example 1.3 There can be instances where such analytical reasoning
can fail. Suppose that all balls have the same diameter, but the red ball
is coated with an adhesive resin that makes it more likely to stick to our
fingers when we touch it. The complicated interaction between the surface
adhesion of our fingers and the surface of the ball may be too difficult to
analyze, so we have no recourse other than to draw balls repeatedly and see
how many times the red ball comes out. Suppose we make 1,000 draws, and
the outcomes are: 451 red, 187 blue, 174 white, and 188 green. Then we can
write

P(R) = 0.451, P(B) = 0.187, P(W) = 0.174, P(G) = 0.188.

The symbol P is used instead of P to highlight the fact that these are simply
observed frequencies, and not the true but unknown probabilities. Often the
observed frequency of an outcome is referred to as its empirical probabil-
ity, or the empirical estimate of the true but unknown probability based on
a particular set of experiments. It is tempting to treat the observed frequen-
cies as true probabilities, but that would not be correct. The reason is that if
the experiment is repeated, the outcomes would in general be quite different.
The reader can convince himself/herself of the difference between frequen-
cies and probabilities by tossing a coin ten times, and another ten times. It
is extremely unlikely that the same set of results will turn up both times.
One of the important questions addressed in this book is: Just how close
are the observed frequencies to the true but unknown probabilities, and just
how quickly do these observed frequencies converge to the true probabilities?
Such questions are addressed in Section 1.3.3.

1.1.2 Definition of a Random Variable and Probability

Suppose we wish to study the behavior of a “random” variable X that can
assume one of only a finite set of values belonging to a set A = {a;,...,a,}.
The set A of possible values is often referred to as the “alphabet” of the
random variable. For example, in the ball-drawing experiment discussed in
the preceding subsection, X can be thought of as the color of the ball drawn,
and assumes values in the set {R, B,W,G}. This example, incidentally,
serves to highlight the fact that the set of outcomes can consist of abstract
symbols, and need not consist of numbers. This usage, adopted in this book,
is at variance from the convention in many mathematics texts, where it is



