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PREFACE

This book is an outgrowth of a course in acoustics I have taught for a number of
years at Rutgers University. The main reason for adding one more book to an
already long list of books on this subject is the lack of modern introductory texts
that treat acoustics as a branch of fluid mechanics. In my view, this is the most
natural approach, at least for those areas of acoustics dealing with the most
common media for sound propagation, namely, air and water. This approach is,
of course, not new. It was used by the authors of many of the books now
considered classical, including Rayleigh, Lamb, and others. In recent times,
however, many of the acoustics texts that have appeared treat the subject as a
branch of electrical engineering. There are indeed many instances in which
acoustic oscillations are analogous to some phenomena discussed in electrical
engineering courses and the analogies are clearly advantageous to those students
whose background is in that discipline. For others, the analogies may be a
drawback; to them, both the acoustic equations and their electrical analogues
are new.

The main subjects discussed in this book are: propagation in uniform fluids at
rest; transmission and reflection phenomena; attenuation and dispersion; and
emission. These are only some of the main topics in acoustics. To have
attempted to cover all of them would have been presumptuous on my part.
Nevertheless, there are several topics that, by some, may be considered basic
enough to warrant their inclusion in a text of this nature, but that have been
omitted. These include aerodynamic sound, diffraction, and propagation in
nonuniform media. Some of these are mentioned in the text, but all too briefly
in relation to their importance. The reasons are that some of these topics are
either outside my areas of competence or are too advanced compared to the
general level of the book. In any event, most of them are fully treated in one or
more specialized books that have appeared recently, so that their detailed
discussion in this book is unnecessary. On the other hand, sound absorption is
discussed in more detail than is usual in books on acoustics. To a certain extent,
this reflects my personal interest in that subject, but it is also intended to qualify
the strongly held notion that dissipation effects in sound waves are unimportant.
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The material given here is intended primarily for a beginning graduate course
in acoustics, but includes portions suitable for more advanced courses. In
writing this book, I have assumed that the student’s background includes the
usual preparation in undergraduate physics and mathematics, as well as a course
in advanced calculus and a course in basic thermodynamics. Prior acquaintance
with fluid mechanics is desirable, but not required. The required material on
that subject is developed in Chapter 1. Chapter 1 also includes a summary of
basic thermodynamics. To make the book self-sufficient, both of these subjects
are developed to a greater degree than is needed in an introductory course.

The book contains more material than is possible to cover in one semester. By
deleting some of the more advanced material, it can be used in a one-semester
course in basic acoustics for students in engineering or in the physical sciences.
On the other hand, with some additional material, it may be used in a one-year
sequence covering both basics and applications.

Because of the basic nature of the subject of this book, I have attempted to
derive each result from basic principles. However, the emphasis throughout is on
the physical meaning of the results, and not on the mathematical techniques that
were used to derive them. On the other hand, in some of the derivations I have
included more detail than customary, since all too often the student’s main
effort is spent in trying to fill in the mathematical steps missing between main
results. Of course, this has some pedagogical value but, more often than not, it
merely improves the ability of the student to manipulate equations. In my view,
a better way of learning is by doing. To this end, a number of problems have
been included in the text. .

Each chapter contains a brief list of suggested references. A more complete
list is given in the Bibliography at the end of the book. The lists are not
exhaustive; their purpose is merely to direct the interested student to other
general sources, or to recent articles touching on some of the material discussed
in the text.

Although I have included the results of some of my own investigations, the
bulk of the material presented may be considered classical. It is therefore
difficult to acknowledge the sources of many of the results that are presented. I
have, however, profited much from Chapter 8 of Fluid Mechanics by L. D.
Landau and E. M. Lifshitz and from Chapters 1-3 of An Introduction to Fluid
Dynamics by G. K. Batchelor. Other books that have influenced this work are
The Theory of Sound by Lord Rayleigh, Theoretical Acoustics by P. Morse and U.
Ingard, Fundamentals of Acoustics by L. E. Kinsler and A. R. Frey, and The
Foundations of Acoustics by E. Skudrzyk.

A major portion of this book was written during 1974—1975 while I was on
leave at the Technion-Israel Institute of Technology. I wish to thank Rutgers
University and The Lady Davis Fellowship Trust for making this leave possible.
I also owe much to the faculty of the Department of Mechanical Engineering at
the Technion for their kind hospitality.
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I would like to express my gratitude to Professor R. A. Dobbins of Brown
University, who introduced me to the subject of this book; to my colleagues at
Rutgers University for their continued encouragement; to many of my students
for their valuable comments and observations; and to Mrs. Rosemarie Boysen,
who typed an earlier version of this book. The final manuscript was typed by
Mrs. Erma Sutton, to whom I am also indebted for improving the clarity of
many passages.

To conclude, I wish to express my gratitude to my wife Judy and to my sons
David and Michael, who patiently endured the writing of this book.
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CHAPTER ONE

BASIC FLUID
MECHANICS AND
THERMODYNAMICS

Acoustics is the science that studies the emission, transmission, and reception of
sound waves. It touches on disciplines as disparate as psychology and meteorol-
ogy, and includes many subdisciplines such as architectural acoustics, bio-
acoustics, environmental acoustics, and musical acoustics.

This book deals only with some of the physical properties of sound waves in
fluids. This topic, although limited in scope, covers one of the most important
applications of acoustics, namely, the study of sound waves in air, and provides
the basis for other branches of acoustics.

Most of the properties of acoustic waves in fluids may be obtained by means
of the wave equation, and this can be derived from approximate conservation
principles without having to resort to the far more complicated equations that
describe general fluid motions. However, in doing so, one is forced to ignore,
from the beginning, effects that may sometimes be important, such as dissipa-
tion and nonlinear distortion. To be sure, these effects could be included at a
later stage when the more common aspects of acoustics have been studied, but
this procedure is more useful when one is aware of the degree of approximation
used in the initial description of the waves. This awareness can best be achieved
by first deriving the general equations of fluid mechanics, an approach that has
the additional advantage of introducing the concepts and symbols needed to
describe acoustic fields at a relatively slower pace. We will therefore take this
more complete approach, and begin by presenting a short derivation of those
equations. More detailed derivations can be found in textbooks dealing with that
subject, such as those listed at the end of the chapter.
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1.1 INDICIAL NOTATION

We will often be interested in describing some physical property at a given
point in space. The coordinates of this point will be denoted by the components
X,, X,, and x;, with respect to a cartesian system of coordinates, of a position
vector x. Thus, if e,, e,, and e; are unit vectors along these coordinate axes, then

x=e,x,+e,x,+e;x; (1.1.1)

The magnitude of the position vector will be denoted by r, where

r=|x]=\/x,2+x§+x§ (1.1.2)

The unit vectors e,, €,, and e, are orthonormal; that is, they are mutually
orthogonal and have unit length. They therefore satisfy the following conditions:

e ce,=e;*e;=e,*e; =0
e e =e,'e,=e;°e; =1

These relationships can be written more succinctly by using the so-called indicial
notation. In this notation, any component of a vector A=(4,, 4,, A;), for
example, may be represented by the symbol A4;, where the index i runs through
the values 1 to 3. Therefore, A may be expressed as

A= D e A, (1.1.3)

This can be simplified even further by adopting the convention that if in an
expression where indices are used, an index is repeated twice, a summation over
the range of that index is implied. Thus, the scalar product between vectors A
and B,

A‘B=A,B,+A4,B,+A,B, (1.1.4)
is simply represented by
A-B=A4,B; (1.1.5)

Of course, since the result of summing over a repeated index is independent of
the symbol used for that index, we could as well have written 4, B,. Indices that
can thus be replaced are called dummy indices, and are useful in writing proper
indicial expressions.
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Using this notation, we can write the six relationships between the unit vectors
e simply as

ee,=d i, j=1,2,3 (1.1.6)

i=j ij?

where the quantity §,;, known as Kronecker’s delta, is defined as

ij?

1, i=j
T B 1.1.7
% {0, i#j RelE)

The quantity §;; is an example of a type of quantity known as a second-order
tensor. To specify such a quantity, one requires 3X3=9 components, which
may be arranged in matrix form. Thus, the components of some tensor #;; may
be represented by

The sum of the diagonal elements of this matrix, known as the trace of the
matrix, may be obtained by setting i=/ in ¢,;, that is,
Intintin=t; (1.1.8)

The operation of setting one index equal to another in an indicial expression is
known as contraction.

In some cases, the elements of a matrix that are symmetrically located with
respect to the diagonal are equal. In such cases, the matrix (and the tensor it
represents) is said to be symmetric. Symmetric tensors of second order satisfy the
symmetry condition

S, =S, (1.1.9)
On the other hand, a tensor §;; for which
g,‘j= —‘Sj,‘ (1110)

is said to be antisymmetric.
An arbitrary second-order tensor #;; can be represented in terms of a symmet-
ric part s;; and an antisymmetric part q;; as follows:

=5, +ay, (1.1.11)
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where

sy=2(t,+1) (1.1.12)
a,=1(t,~1,) (1.1.13)

Tensors of higher order may also be needed. For example, a tensor of third
order is required to represent the cross product between two vectors. This is the
alternating tensor ¢, ;, which is equal to zero unless 7, j, and k are all different, in
which case its value is either +1 or —1 depending on whether i, j, and k are in
cyclic order. Thus, if e;,; =1, then

€3 =€y =e3,=+1
e3=ep=exn =—1

with the remaining 21 components all being equal to zero. In terms of e, ;, the
ith component of the cross product between vectors A and B can be written as

(AXB),=e¢;;, A;B, (1.1.14)
The following relations involving e, ;, are often useful:
eijkeilm=8j akm—ajmakl
€, ik€ijm=20km (1.1.15)

eijkeijk=6

As an example of the usefulness of these expressions, let us derive the
following vector identity:

Ax(BxC)=(A-C)B—(A-B)C (1.1.16)

First, denote the left-hand side of this identity by D. Then, using the representa-
tion given by (1.1.14), the ith component of D may be expressed as

D;=e;;; A;,(BxC), (1.1.17)
Again, the kth component of BXC may be written as e,,;B;C;, but if this
quantity were to be used in the above equation, it would result in an indicial
expression having indices repeated more than twice. Such expressions are not
admissible, as they cannot be evaluated properly. To avoid this difficulty, we
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write, instead, the equivalent expression
BxC).=exmB,C, (1.1.18)
so that

D;=¢,jemA,; B/Cy, (1.1.19)

Because of its definition, the alternating-symbol tensor is not affected by an
even number of permutations of its indices. Therefore, the first of these symbols
on the right-hand side of (1.1.19) can be written as e, ;, so that using the first of
the identities given by (1.1.15) we obtain

Di=(8i18jm_8im8jl)AjBlCm (1-1‘20)
Remembering the properties of the Kronecker delta, we can write this as
D;=A;B;C;—A,B,C, (1.1.21)

This is the indicial equivalent of the identity that was to be derived.

We should notice that each of the terms on the right-hand side of the last
expression for D, above contains a repeated index, and must therefore be
summed over it. The other index, 7, is not repeated, and is therefore a “free”
index. If an indicial expression is properly written, the free indices in each term
of the expression must be the same.

Finally, we may also use the indicial notation to simplify expressions involv-
ing spatial derivatives of various quantities. Thus, the ith component of the
operator V defined by

a a a
V—CIE +628—x2 +e3a—x3 (1122)
is simply denoted by
(V),= 9 (1.1.23)
i axi A

Therefore, the ith component of the gradient of a scalar ¢ is

99
ox;

(Vo) = (1.1.24)



