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INTRODUCTION

The constructive theory of functions is a branch of mathematical analysis
dealing with questions that arise in the approximate representation of arbi-
trary functions by the simplest analytical expedients possible.

In this book we shall refrain from considering classes of functions of too ex-
tensive a character, and shall restrict ourselves to the investigation of the
following two important classes:

1. Real functions that are defined and continuous over a specified seg-
ment [a, b]. We shall denote the set of all these functions by C([a, b]).

II. Real functions that are defined and continuous over the entire real
axis (— o, + =), and at the same time have the period 2, so that the equa-

ion (x4 22) = f(2)

is true for every value of . We shall denote the set of all these functions
by Cz,.

For the approximate representation of functions of both these classes we
shall employ two particularly simple types of function: For class C([a, b)),
the usual algebraic polynomials

P(x) =co+ ¢y + cpa? + -++ + cpa®
with real coefficients; for class C,,, however, the trigonometric polynomials,
i.e. functions of the form
T(x) =A + (aycos & + bysina) + «-- + (aycosnzx + b, sinnw)
with real coefficients A, ax, by.

We still have to explain what we mean by the approximate representation
of a function f(z) by a polynomial P(z) or T'(z). This may be done in a
number of ways.

We shall denote a polynomial P(z) as an approximate function for a func-
tion f(z) € C([a, b)), if for all values of = € [a, b] the inequality

|P(@) — f(a)] <e
holds true, where the constant € > 0 is characteristic of the degree of ap-
proximation attained.

Similarly in this connection we denominate a trigonometric polynomial
T'(z) as an approximation for a function f(z) e Cs,, if for all real values of =z,
the inequality

| T(z) — f(x)| <&
holds true.
vii
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On account of the 27 periodicity of T'(z) it is, furthermore, sufficient if
this last inequality be satisfied in a segment of length 2, for instance, in
the segment [0, 2], and even simply in the half-segment open to the right,
since it is then actually satisfied over the whole of the axis.

If we make the principle of evaluation, thus defined, basic for the close-
ness of approximation in our theory, then we may denominate it as the
Theory of Uniform Approzimation.

Clearly from this standpoint, the value

max | P(z) — f()|
aszsd

may serve as the “measure’’ of the accuracy attained in the case f(z) € C[a, b],
and the value
max | T'(z) — f()]
—o<z<+o
in the case f(z) € Co,. This is, so to speak, the ‘“distance’’ between f(z) and
P(z), or between f(z) and T'(z), respectively.

[Parts IT and III, described below, are to be published in English at a
later date.] '

Part II of the book is devoted to the Theory of Mean Value Approzimation.
We shall there deal with the approximate representation of functions f(z) of
an essentially more general type, for which we shall, however, again make
use of the standard algebraic polynomials P(z) and trigonometric polynomials
T(z) as approximate functions; we shall, nevertheless, change the criterion
for the attained accuracy of the approximation.

We shall, in fact, use the integral

b

[tP@) — {1 da

as the “measure of distance’” of the two functions f(z) and P(z), and simi-
larly the integral

[17 (@) — (@) da

as the distance of a trigonometric polynomial 7'(z) from a given function
f(z) in the segment [—m, +].

The approach thus modified will lead us to an essentially different theory
with new formulations of problems and fresh results.

Finally in Part III, we shall investigate the problems arising out of inter-
polation. As a criterion of the approximation of a polynomial P(z) to 4

function f(z) e C([a, b]), neither the smallness of the value
ISn&SXb | P(x) — f()]

nor of

b
[1P@) — t@)rds
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will be of service, but the actual coincidence of P(x) with f(z) at various pre-
viously selected points (‘“‘interpolation nodes’)

. Y

of the segment [a, b]. The same problem arises in the approximation of a
function f(z) e Cs, by a trigonometric polynomial 7'(z), in which the inter-
polation nodes must lie in one and the same segment of the length 2.

As we shall see, all these points of view are most closely interconnected,
so that the theories pertaining to them overlap to a very high degree. In
fact, it is this interlocking of manifold ideas, methods, and facts that—quite
apart from its highly practical significance—is chiefly responsible for the con-
structive theory of functions being one of the most beautiful branches of
mathematics.
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CHAPTER 1

WEIERSTRASS’ APPROXIMATION THEOREMS

§ 1. WEIERSTRASS’ First Theorem

The following fundamental question is intrinsic in the theory of continu-
ous approximation from the outset: “Can every arbitrary, continuous func-
tion in general be approximately represented by a polynomial with arbi-
trarily postulated accuracy?”’ WEIERSTRAsS [1]! found it possible to give
an affirmative answer to this in 1885. We formulate his result as:

WEIERSTRASS’ First Approximation Theorem. For an arbitrarily assumed
f(z) € C([a, b]), where € > 0, a polynomial P(z) exists of such type that for all
values of z € [a, b), the inequality P(z) — f(z) < ¢ is satisfied.
From the large number of proofs now available for this theorem, I here
present, one that depends on another equally important theorem in analysis,
i.e., one of S. N. BERNSTEIN’s theorems [1].

Lemma 1. The following identities hold good:

2"0: Fl—a)" =1, (1)
k=0
Sk — napch 2t (1— )" = nz(1— ). 2)

k=0 .
Proof. Identity (1) is trivial; it follows straight from the standard binomial
formula, putting a = zand b = 1 — z in the expansion

(@ + b)* =k§"00f. a* %k, (3)

The proof of the second identity is not quite so simple. Putting a = 2,
and b = 1, (3) above gives us the identity

S0 =E+1)" (4)
k=0
Taking the first differential of (4) and multiplying it by 2, we get
JkCh =nziz+1)", (5)
E=0

1 Figures in square brackets refer to the bibliography at the end of this volume.
3
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and differentiating (5) and again multiplying the result by z, we get

3 k0 = nz(nz + 1) (z + 12 (6)
¥=0
Now put z = : Z_ in the three identities (4), (5), and (6), and multiply
-z
each of them by (1 — z)*. This will give three new identities
3R — o =1, )
¥=0
LEE
D kCpz' (1 — )" *=nzx, (8)
=0
f‘kz()':x"(l — )" =nr(nz+1— 1. (9)
k=0

Multiplying (7), (8), and (9), respectively, by n?z?, —2nz, and 1, and add-
ing the results, we obtain the required identity (2).

Corollary. For all values of x

n

pALE nz)2Ckzk(1 — )"* g%. (10)
For, since 422 —4z+1=022—12=0
. 1
it follows that z(l—2) <-—.

-+

Lemma 2. Let z €0, 1] and 6 > 0 arbitrarily. If we also denote by An(z)
the set of k-values from the range 0, 1, 2, 3, ..., n, for which

=4, (11)

’k
——z
n

then

1
oo ) ) (.
l:eag’;z) ad ; T 4né®

(12)
Proof. For k € A,(z), it follows from (11) that

(k — nx)?
T =1
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and hence
W 1
S Oad*l—2)" s = 3 (k—napcilta — ot
kedn(2) n20% 1 G (2)

If we now extend the summation on the right-hand side to all values in
the range k = 0, 1, 2, 3, . . ., n, then the right-hand sum does not decrease,
since for z [0, 1] none of the newly added summands is negative. Hence
the inequality (1) leads immediately to the desired inequality (12).

The gist of this lemma is—in brief—that with extremely large values of
n in the sum

n
ok — ot (13)
k=0
only those summands are significant whose index k satisfies the condition
k —2z|<é ,
n

while the remaining . summands contribute but slightly to the total.

Definition. If f(z) is a given function in the segment [0, 1], then every
polynomial of the form

n
By = 31 (5) Chat — o
k=0 \7
may be denominated a BERNSTEIN polynomial of the function f(z).
For large values of n, and if f(z) is continuous, such a polynomial will
differ only slightly from f(z). For—as we have already seen—those sum-
mands for which 2 is remote from z play hardly any part in the sum (13),

n

and this holds also for the polynomial B,(z), since all the factors f (é) are of

n
course bounded. In the polynomial B,(z), accordingly, only those sum-

mands are substantially significant for which & lies in close proximity to z.
n

But for these summands the factor f (E) differs only slightly from f(z), be-
n

cause of the continuity of f(z). This, however, means that the whole poly-
nomial B,(z) varies only slightly if we substitute f(z) for f <E> in its sum-
n

mands. In other words: the approximate equation

By(2) ~ 3 {(z)Chat (1 — 2"~
k=0

holds good.
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From this and equation (1) it immediately follows that
B,(x) ~ f(=).

This heuristic consideration is formulated in exact terms in the following
theorem :

S. N. BERNSTEIN’s Theorem. If f(z) is continuous in the segment [0, 1],
then in relation to =

lim B, (z) = f(x) (14)

-+ 00
holds uniformly in this segment.

Proof. Let M be the greatest value of [f(z)| in [0, 1]. If, furthermore,
& > 0 is arbitrarily assumed, then in consequence of the uniform continuity
of f(z) in the segment [0, 1], a number § > 0 can be found such that for

lo’ — 2’| <&
the inequality
’ ’ e
[f(z") — f(z)] <3

is always true.
Now let z be a value arbitrarily chosen from the segment [0, 1]. From

equation (1)

F@) = 3 1(z)0tat (1 — o™*,
k=0

so that
» k -
Bn) — 10 = 3 {1 (5) - r) eheta — o, (15)
Now let us split the series of values k = 0, 1, 2, ..., n into two classes
I'.(z) and A,(z) by determining:
ke I'y(x), wenn %-— x| <9,
k
ked,(x), wenn ad = 0.

The sum (15) correspondingly splits also into two sums Zr and =,. In

the first
'f(f)—/m! <

n
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whence 1Zp] = > it — )" E,

€
2 kely(2)

S il — 2t SOt — =1,

and as kel (2) k=0

it follows that

| Zrl < & (16)
In the second sum, if
i(5)— @] s2m
n = b
then, from (12),
M
i s2M P —
| 24l = “%'(3)0,.2: a—a*" = T
This inequality combined with (16) gives
€ M
IB.(Z) —f(x)l g 5 + 2”62.
For sufficiently high values n > N,
L e 7

nd?
and consequently

| Ba(2) — f(2)| <e.

Hence the theorem is proved; for the choice of N. is determined only by
inequality (17) and is in no way dependent on the value of z selected.

We are now in a position to prove the WEIERSTRASS theorem previously
mentioned. In fact the WeIErsTrAss theorem follows directly from the
BERNSTEIN theorem, if segment [a, b] coincides with segment [0, 1].2 Now
let segment [a, b] be different from segment [0, 1]. Then let us introduce the
function

o(y) = fla+ y(b — a)]

2 We observe, however, that the BERNSTEIN theorem is more productive than the
WEIERSTRASS in this case, as it provides a sequence of well-defined polynomials, while
the WEIERSTRASS theorem only establishes the existence of such a sequence of approxima-
tions, without stating anything in regard to its construction.
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which is defined and continuous in the segment [0, 1]. From what has just
been proved, a polynomial

n
Qly) =23 ay*
¥=0
must exist that satisfies the condition

<e (18)

/w+yw—my1§qw

for all values of y €[0, 1].

But for every value of z € [a, b], the fraction I,

lies in the segment
—a

[0, 1]; it can therefore be substituted for y in (18). This gives

which proves that the polynomial

Pm=ﬁqC:y

k=0

approximately represents the function f(z) with the required degree of
accuracy.

We can express the WEIERSTRASS theorem in still another form:

A. Every continuous function f(x) in the segment [a, b] is the limiting func-
tion of a uniformly convergent sequence of polynomials in this segment.

In point of fact, let us take the null-sequence ¢, = : , then for each such
n
value ¢, a polynomial P,(z) can be found that satisfies the condition
1
|P~(x)—/(1')|<; (a =z =0),

Hence, clearly

Py(z) 3 f(2)
forn— .2
Finally, we give the WEIERSTRASS theorem still a third form:
B. Every continuous function in a segment can be expanded into a uniformly
converging series of polynomials in that segment.
Suppose we have found a series of polynomials uniformly converging on
f(z), then let

Qi (z) = P,(2), @n(2) = Pa(z) — Pp_1(2) (n >1).

3 Qccasionally, we denote uniform convergence by the symbol — .
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Then the partial sums of the series

Z Qn(2)

n==1
coincide with the polynomials P,(z), so that this series itself uniformly con-
verges on f(z).

§ 2. WEIERSTRASS’ Second Approximation Theorem

WeiersTRAss’ second theorem states the possibility of approximately rep-
resenting continuous periodic functions by trigonometric polynomials to any
required degree of accuracy.

WEIERSTRASS’ second theorem. If f(z) e Cs, and € > 0 be arbitrarily as-
sumed, then there exists a trigonometric polynomial T(z) such that for all real
values of z the inequality |T'(z) — f(z)| < € is satisfied.

This theorem—Ilike the first—also admits two other formulations (of type
A, and B, respectively). A particularly simple proof was furnished for this
by DE LA VALLEE-PoussiN in 1908 [1]; we follow it here.

Lemma 1. If ¢(z) € Cy,, then for all values o the equation

a+2n 2n

f p(x)dx =f<p(x) dx
0

a

holds true.
In fact, we have

at+2n 0 2n a+2n

f () dx:a/-q)(x)dx +0/<p(.t)d:c+2£ p(z)dx.

a

If in the last integral on the right we put * = z + 2= and consider the
equation ¢(z + 27) = ¢(2), then for this last integral we get the value

0
— [#() dz,
from which the lemma follows.
Lemma 2. The identity *
= 2n— D!n
/Coszntdt:(TZn_)!—!)—.E (19)

holds true. i

4 The symbol n!! denotes the product of all natural numbers not exceeding n and even
or uneven according as n is even or uneven, e.g., 8!l =2-4-6- 8.



