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Preface

Numerical integration of differential equations, as an essential tool for investigating
the qualitative behaviour of the physical universe, is a very active research area
since large-scale science and engineering problems are often modelled by systems
of ordinary and partial differential equations, whose analytical solutions are usually
unknown even when they exist. Structure preservation in numerical differential
equations, known also as geometric numerical integration, has emerged in the last
three decades as a central topic in numerical mathematics. It has been realized that
an integrator should be designed to preserve as much as possible the
(physical/geometric) intrinsic properties of the underlying problem. The design and
analysis of numerical methods for oscillatory systems is an important problem that
has received a great deal of attention in the last few years. We seek to explore new
efficient classes of methods for such problems, that is high accuracy at low cost.
The recent growth in the need of geometric numerical integrators has resulted in the
development of numerical methods that can systematically incorporate the structure
of the original problem into the numerical scheme. The objective of this sequel to
our previous monograph, which was entitled “Structure-Preserving Algorithms for
Oscillatory Differential Equations”, is to study further structure-preserving inte-
grators for multi-frequency oscillatory systems that arise in a wide range of fields
such as astronomy, molecular dynamics, classical and quantum mechanics, elec-
trical engineering, electromagnetism and acoustics. In practical applications, such
problems can often be modelled by initial value problems of second-order differ-
ential equations with a linear term characterizing the oscillatory structure. As a
matter of fact, this extended volume is a continuation of the previous volume of our
monograph and presents the latest research advances in structure-preserving algo-
rithms for multi-frequency oscillatory second-order differential equations. Most
of the materials of this new volume are drawn from very recent published research
work in professional journals by the research group of the authors.

Chapter 1 analyses in detail the matrix-variation-of-constants formula which
gives significant insight into the structure of the solution to the multi-frequency and
multidimensional oscillatory problem. It is known that the Stérmer—Verlet formula
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viii Preface
is a very popular numerical method for solving differential equations. Chapter 2
presents novel improved multi-frequency and multidimensional Stormer—Verlet
formulae. These methods are applied to solve four significant problems. For
structure-preserving integrators in differential equations, another related area of
increasing importance is the computation of highly oscillatory problems. Therefore,
Chap. 3 explores improved Filon-type asymptotic methods for highly oscillatory
differential equations. In recent years, various energy-preserving methods have
been developed, such as the discrete gradient method and the average vector field
(AVF) method. In Chap. 4, we consider efficient energy-preserving integrators
based on the AVF method for multi-frequency oscillatory Hamiltonian systems. An
extended discrete gradient formula for multi-frequency oscillatory Hamiltonian
systems is introduced in Chap. 5. It is known that collocation methods for ordinary
differential equations have a long history. Thus, in Chap. 6, we pay attention to
trigonometric Fourier collocation methods with arbitrary degrees of accuracy in
preserving some invariants for multi-frequency oscillatory second-order ordinary
differential equations. Chapter 7 analyses the error bounds for explicit ERKN
integrators for systems of multi-frequency oscillatory second-order differential
equations. Chapter 8 contains an analysis of the error bounds for two-step extended
Runge—Kutta—Nystrom-type (TSERKN) methods. Symplecticity is an important
characteristic property of Hamiltonian systems and it is worthwhile to investigate
higher order symplectic methods. Therefore, in Chap. 9, we discuss high-accuracy
explicit symplectic ERKN integrators. Chapter 10 is concerned with
multi-frequency adapted Runge—Kutta—Nystrom (ARKN) integrators for general
multi-frequency and multidimensional oscillatory second-order initial value prob-
lems. Butcher’s theory of trees is widely used in the study of Runge—Kutta and
Runge—Kutta—Nystrom methods. Chapter 11 develops a simplified tricoloured tree
theory for the order conditions for ERKN integrators and the results presented in
this chapter are an important step towards an efficient theory of this class of
schemes. Structure-preserving algorithms for multi-symplectic Hamiltonian PDEs
are of great importance in numerical simulations. Chapter 12 focuses on general
approach to deriving local energy-preserving integrators for multi-symplectic
Hamiltonian PDEs.

The presentation of this volume is characterized by mathematical analysis,
providing insight into questions of practical calculation, and illuminating numerical
simulations. All the integrators presented in this monograph have been tested and
verified on multi-frequency oscillatory problems from a variety of applications to
observe the applicability of numerical simulations. They seem to be more efficient
than the existing high-quality codes in the scientific literature.

The authors are grateful to all their friends and colleagues for their selfless help
during the preparation of this monograph. Special thanks go to John Butcher of The
University of Auckland, Christian Lubich of Universitdt Tiibingen, Arieh Iserles of
University of Cambridge. Reinout Quispel of La Trobe University, Jesus Maria
Sanz-Serna of Universidad de Valladolid, Peter Eris Kloeden of Goethe—
Universitit, Elizabeth Louise Mansfield of University of Kent, Maarten de Hoop of
Purdue University, Tobias Jahnke of Karlsruher Institut fiir Technologie (KIT),
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Chapter 1
Matrix-Variation-of-Constants Formula

The first chapter presents the matrix-variation-of-constants formula which is funda-
mental to structure-preserving integrators for multi-frequency and multidimensional
oscillatory second-order differential equations in the current volume and the previous
volume [23] of our monograph since the formula makes it possible to incorporate
the special structure of the multi-frequency oscillatory problems into the integrators.

1.1 Multi-frequency and Multidimensional Problems

Oscillatory second-order initial value problems constitute an important category of
differential equations in pure and applied mathematics. and in applied sciences such
as mechanics, physics, astronomy, molecular dynamics and engineering. Among
traditional and typical numerical schemes for solving these kinds of problems is the
well-known Runge-Kutta-Nystrom method [13], which has played an important role
since 1925in dealing with second-order initial value problems of the conventional
form

(1.1)

Y'= fy.¥), x € [xo,xendl,
y(xo) = yo. Y'(x0) = yp-
However, many systems of second-order differential equations arising in applications
have the general form
Y+ My=f(y.¥), x € I[xo. Xenal
(1.2)

! /
y(xo) = yo. ¥y (x0) = ¥

where M € R?* is a positive and semi-definite matrix (not necessarily diagonal nor
symmetric, in general) that implicitly contains and preserves the main frequencies of
the oscillatory problem. Here, f : RY x R — R, with the position y(x) € R? and

© Springer-Verlag Berlin Heidelberg and Science Press, Beijing, China 2015 1
X. Wu et al., Structure-Preserving Algorithms for Oscillatory
Differential Equations 11, DOI 10.1007/978-3-662-48156-1_1



2 I Matrix-Variation-of-Constants Formula

the velocity y'(x) as arguments. The system (1.2) is a multi-frequency and multidi-
mensional oscillatory problem which exhibits pronounced oscillatory behaviour due
to the linear term My. Among practical examples we mention the damped harmonic
oscillator, the van der Pol equation, the Liénard equation (see [10]) and the damped
wave equation. The design and analysis of numerical integrators for nonlinear oscil-
lators is an important problem that has received a great deal of attention in the last
few years.

It is important to observe that the special case M = 0 in (1.2) reduces to the
conventional form of second-order initial value problems (1.1). Therefore, each inte-
grator for the system (1.2) is applicable to the conventional second-order initial value
problems (1.1). Consequently, this extended volume of our monograph focuses only
on the general second-order oscillatory system (1.2).

When the function f does not contain the first derivative y’, (1.2) reduces to the
special and important multi-frequency oscillatory system

y'+ My = f(y). € [x0, Xend],
[. y=f(y), x € [xp,Xendl (13)

y(xo) = yo, ¥ (x0) = ).

If M is symmetric and positive semi-definite and f(y) = —VU(y), then withg =y,
p = y'. (1.3) becomes identical to a multi-frequency and multidimensional oscilla-
tory Hamiltonian system of the form

[ p = =VyH(p.q). p(xy) = py. (1.4)
9 =V,H(p.q), ¢(xp)=qo. .

with the Hamiltonian
| 1
H(p.q)=35p"p+54"Mq + U(q), (1.5)

where U (¢) is a smooth potential function. The solution of the system (1.4) exhibits
nonlinear oscillations. Mechanical systems with a partitioned Hamiltonian function
yield examples of this type. It is well known that two fundamental properties of
Hamiltonian systems are:

(i) the solutions preserve the Hamiltonian H, i.e., H(p(x), g(x)) = H(po. qo) for
any x = xo;

(ii) the corresponding flow is symplectic, i.e., it preserves the differential 2-form
d
Z dP,‘ N d(/i .

i=|

It is true that great advances have been made in the theory of general-purpose
methods for the numerical solution of ordinary differential equations. However, the
numerical implementation of a general-purpose method cannot respect the quali-
tative behaviour of a multi-frequency and multidimensional oscillatory problem. It
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turns out that structure-preserving integrators are required in order to produce the
qualitative properties of the true flow of the multi-frequency oscillatory problem.
This new volume represents an attempt to extend our previous volume [23] and
presents the very recent advances in Runge-Kutta-Nystrom-type (RKN-type) meth-
ods for multi-frequency oscillatory second-order initial value problems (1.2). To this
end, the following matrix-variation-of-constants formula is fundamental and plays
an important role.

1.2 Matrix-Variation-of-Constants Formula

The following matrix-variation-of-constants formula gives significant insight into
the structure of the solution to the multi-frequency and multidimensional problem
(1.2), which has motivated the formulation of multi-frequency and multidimensional
adapted Runge-Kutta-Nystrom (ARKN) schemes, and multi-frequency and multidi-
mensional extended Runge-Kutta-Nystrom (ERKN) integrators, as well as classical
RKN methods.

Theorem 1.1 (Wu et al. [21]) If M € R?*? is a positive semi-definite matrix and
f R x RY — RY in (1.2) is continuous, then the exact solution of (1.2) and its
derivative satisfy

[ () =go((x — x0)>M)yo + (x — x0)i ((x — x0)> M)y},

+ / = 01 ((x — 0°M) f@Odz,

: ; —_ (1.6)
V() = — (x = x0) My ((x — x0)* M) yo + po((x — x0)> M)y,
+ / go((x — 0)2M) f(2)de,
for xy, x € (—00, +00), where
F@) = (3@, y' @)
and the matrix-valued functions ¢o(M) and ¢\ (M) are defined by
00 (_])kMk » 20 (__])kMk
M) = _ M) = _ .

QM) =2 —Ger + A =2 G a.7

We notice that these matrix-valued functions reduce to the ¢-functions used for
Gautschi-type trigonometric or exponential integrators in [4, 7] when M is a sym-
metric and positive semi-definite matrix.



