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CHAPTER 1

INTRODUCTION

Compressible flows are encountered in many applications in Aerospace and Me-
chanical engineering. Some examples are flows in nozzles, compressors, turbines
and diffusers. In aerospace engineering, in addition to these examples, compressible
flows are seen in external aerodynamics, aircraft and rocket engines. In almost all
of these applications, air (or some other gas or mixture of gases) is the working
fluid. However, steam can be the working substance in turbomachinery applications.
Thus, the range of engineering applications in which compressible flow occurs is
quite large and hence a clear understanding of the dynamics of compressible flow is
essential for engineers.

1.1 Compressibility of Fluids

All fluids are compressible to some extent or other. The compressibility of a fluid is

defined as
1 ov (1)
T=———, .
vAaP

where v is the specific volume and P is the pressure. The change in specific
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2 INTRODUCTION

volume corresponding to a given change in pressure, will, of course, depend upon
the compression process. That is, for a given change in pressure, the change in
specific volume will be different between an isothermal and an adiabatic compression
process.

The definition of compressibility actually comes from thermodynamics. Since the
specific volume v = v(7T, P), we can write

ov ov
(IU = (5?)po+ (ﬁ)[)dT.

From the first term, we can define the isothermal compressibility as —% (5)71’5)
o

and, from the second term, we can define the coefficient of volume expansion

as %(%)P The second term represents the change in specific volume (or

equivalently density) due to a change in temperature. For example, when a gas is
heated at constant pressure, the density decreases and the specific volume increases.
This change can be large, as is the case in most combustion equipment, without
necessarily having any implications on the compressibility of the fluid. It thus
follows that compressibility effect is important only when the change in specific
volume (or equivalently density) is due largely to a change in pressure.

If the above equation is written in terms of the density p, we get

1 0p

- pdP’ (1:2)
The isothermal compressibility of water and air under standard atmospheric condi-
tions are 5 x 107'%n?/N and 10~°m?2/N. Thus, water (in liquid phase) can be
treated as an incompressible fluid in all applications. On the contrary, it would seem
that, air, with a compressibility that is five orders of magnitude higher, has to be
treated as a compressible fluid in all applications. Fortunately, this is not true when
flow is involved.

1.2 Compressible and Incompressible Flows

It is well known from high school physics that sound (pressure waves) propagates
in any medium with a speed which depends on the bulk compressibility. The less
compressible the medium, the higher the speed of sound. Thus, speed of sound is
a convenient reference speed, when flow is involved. Speed of sound in air under
normal atmospheric conditions is 330 m/s. The implications of this when there is
flow are as follows. Let us say that we are considering the flow of air around an
automobile travelling at 120 kph (about 33 m/s). This speed is 1/10th of the speed of
sound. In other words, compared with 120 kph, sound waves travel 10 times faster.
Since the speed of sound appears to be high compared with the highest velocity in
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the flow field, the medium behaves as though it were incompressible. As the flow
velocity becomes comparable to the speed of sound, compressibility effects become
more prominent. In reality, the speed of sound itself can vary from one point to
another in the flow field and so the velocity at each point has to be compared with
the speed of sound at that point. This ratio is called the Mach number, after Ernst
Mach who made pioneering contributions in the study of the propagation of sound
waves. Thus, the Mach number at a point in the flow can be written as

M==2 (1.3)
a

where u is the velocity magnitude at any point and a is the speed of sound at that
point.

We can come up with a quantitative criterion to give us an idea about the importance
of compressibility effects in the flow by using simple scaling arguments as follows.
From Bernoulli’s equation for steady flow, it follows that AP ~ pU?, where U is
the characteristic speed. It will be shown in the next chapter that the speed of sound
a = \/AP/Ap, wherein AP and Ap correspond to an isentropic process. Thus,

1A U? f
%:;H’;A :a—2:1\12. (1.4)

On the other hand, upon rewriting Eqn. 1.2 for an isentropic process, we gel

'é_/)' = T:..s'e:n[rapl('AP .

p

Comparison of these two equations shows clearly that, in the presence of a flow,
density changes are proportional to the square of the Mach number'. It is customary
to assume that the flow is essentially incompressible if the change in density is
less than 10% of the mean value*. It thus follows that compressibility effects are
significant only when the Mach number exceeds 0.3.

1.3 Perfect Gas Equation of State

In this text, we assume throughout that air behaves as a perfect gas. The equation of
state can be written as

Pv=RT, (1.5)

This is true for steady flows only. For unsteady flows, density changes are proportional to the Mach
number.
Provided the change is predominantly due to a change in pressure.
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where 7' is the temperature®. R is the particular gas constant and is equal to R/ M
where R = 8314 J/kmol /K is the Universal Gas Constant and M is the molecular
weight in units of kg/kmol. Equation 1.5 can be written in many different forms
depending upon the application under consideration. A few of these forms are
presented here for the sake of completeness. Since the specific volume v = 1/p,
we can write

P = pRT,

or, alternatively, as
PV =mRT ,

where m is the mass and V' is the volume. If we define the concentration ¢ as
(m/M)(1/V), then,
P =c¢RT. (1.6)

Here ¢ has units of kmol/m?®. The mass density p can be related to the particle
density n (particles/m?) through the relationship p = nM/N,. Here we have
used the fact that 1 kmol of any substance contains Avogadro number of molecules
(N4 = 6.023 x 102%). Thus

R
Pe= an = nkgT , (1.7)

where kp is the Boltzmann constant.

1.3.1 Continuum Hypothesis

In our discussion so far, we have tacitly assumed that properties such as pressure,
density. velocity and so on can be evaluated without any ambiguity. While this is
intuitively correct, it deserves a closer examination.

Consider the following thought experiment. A cubical vessel of a side dimension
L contains a certain amount of a gas. One of the walls of the vessel has a view
port to allow observations of the contents within a fixed observation volume. We
now propose to measure the density of the gas at an instant as follows - count the
number of molecules within the observation volume; multiply this by the mass of
each molecule and then divide by the observation volume.

To begin with, let there be 100 molecules inside the vessel. We would notice that the

§n later chapters this will be referred to as the static temperature
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density values measured in the aforementioned manner fluctuate wildly going down
even to zero at some instants. If we increase the number of molecules progressively
to 10%, 10%, 10 and so on, we would notice that the fluctuations begin to diminish
and eventually die out altogether. Increasing the number of molecules beyond this
limit would not change the measured value for the density.

We can carry out another experiment in which we attempt to measure the pressure
using a pressure sensor mounted on one of the walls. Since the pressure exerted
by the gas is the result of the collisions of the molecules on the walls, we would
notice the same trend as we did with the density measurement. That is, the
pressure measurements too exhibit fluctuations when there are few molecules and
the fluctuations die out with increasing number of molecules. The measured value,
once again, does not change when the number of molecules is increased beyond a
certain limit.

We can intuitively understand that, in both these experiments, when the number
of molecules is less, the molecules travel freely for a considerable distance before
encountering another molecule or a wall. As the number of molecules is increased,
the distance that a molecule on an average can travel between collisions (which
is termed as the mean free path, denoted usually by A) decreases as the collision
frequency increases. Once the mean free path decreases below a limiting value,
measured property values do not change any more. The gas is then said to behave as
a continuum. The determination of whether the actual value for the mean free path
is small or not has to be made relative to the physical dimensions of the vessel. For
instance, if the vessel is itself only about 1 pzm in dimension in each side, then a
mean free path of 1 um is not at all small! Accordingly, a parameter known as the
Knudsen number (K'n) which is defined as the ratio of the mean free path (\) to the
characteristic dimension (L) is customarily used. Continuum is said to prevail when
Kn < 1. In reality, once the Knudsen number exceeds 102 or so, the molecules of
the gas cease to behave as a continuum.

It is well known from kinetic theory of gases that the mean free path is given as

1

A= ———,
V2rd2n

(1.8)

where d is the diameter of the molecule and 7 is the number density.

EXAMPLE 1.1

Determine whether continuum prevails in the following two practical situations:
(a) an aircraft flying at an altitude of 10 km where the ambient pressure
and temperature are 26.5 kPa and 230 K respectively and (b) a hypersonic
cruise vehicle flying at an altitude of 32 km where the ambient pressure and
temperature are 830 Pa and 230 K respectively. Take d = 3.57 x 107" m.
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Solution In both the cases, it is reasonable to assume the characteristic dimension L
tobe 1 m.

(a) Upon substituting the given values of the ambient pressure and temperature into
the equation of state, P = nkgT, we get n = 8.34 x 10%* particles/m®. Hence

1

A=— =212x10""m.
Vord2n

Therefore, the Knudsen number Kn = \/L = 2.12 x 1077,
(b) Following the same procedure as before. we can easily obtain Kn = 6.5 x 1079,

It is thus clear that, in both cases, it is quite reasonable to assume that continuum
prevails.

1.4 Calorically Perfect Gas

In the study of compressible flows, we need, in addition to the equation of state, an
equation relating the internal energy to other measurable properties. The internal
energy, strictly speaking, is a function of two thermodynamic properties, namely,
temperature and pressure. In reality, the dependence on pressure is very weak for
gases and hence is usually neglected. Such gases are called thermally perfect and for
them e = f(7"). The exact nature of this function is examined next.

From a molecular perspective, it can be seen intuitively that the internal energy
will depend on the number of modes in which energy can be stored (also known as
degrees of freedom) by the molecules (or atoms) and the amount of energy that can
be stored in each mode. For monatomic gases, the atoms have the freedom to move
(and hence store energy in the form of kinetic energy) in any of the three coordinate
directions.

For diatomic gases, assuming that the molecules can be modelled as “dumb bells”,
additional degrees of freedom are possible. These molecules, in addition to
translational motion along the three axes, can also rotate about these axes. Hence,
energy storage in the form of rotational kinetic energy is also possible. In reality,
since the moment of inertia about the “dumb bell” axis is very small, the amount
of kinetic energy that can be stored through rotation about this axis is negligible.
Thus, rotation adds essentially two degrees of freedom only. In the “dumb bell”
model, the bonds connecting the two atoms are idealized as springs. When the
temperature increases beyond 600 K or so, these springs begin to vibrate and so
energy can now be stored in the form of vibrational kinetic energy of these springs.
When the temperature becomes high (> 2000 K), transition to other electronic levels
and dissociation take place and at even higher temperatures the atoms begin to ionize.



CALORICALLY PERFECT GAS 7

These effects do not represent degrees of freedom.

Having identified the number of modes of energy storage, we now turn to the
amount of energy that can be stored in each mode. The classical equipartition
energy principle states that each degree of freedom, when “fully excited”, contributes
1/2 RT 1o the internal energy per unit mass of the gas. The term “fully excited”
means that no more energy can be stored in these modes. For example, the
translational mode becomes fully excited at temperatures as low as 3 K itself. For
diatomic gases, the rotational mode is fully excited beyond 600 K and the vibrational
mode beyond 2000 K or so. Strictly speaking. all the modes are quantized and so the
energy stored in each mode has to be calculated using quantum mechanics. However,
the spacing between the energy levels for the translational and rotational modes are
small enough. that we can assume equipartition principle to hold for these modes.

We can thus write 3
e = =RT,
73

for monatomic gases and

hv/kgT

3
e=oRT+RT + e

BT ;

for diatomic gases. In the above expression, v is the fundamental vibrational
frequency of the molecule. Note that for large values of 7', the last term approaches
RT. We have not derived this term formally as it would be well outside the scope of
this book. Interested readers may see the book by Anderson for full details.

The enthalpy per unit mass can now be calculated by using the fact that

h=e+Pv=e+ RT.

We can calculate C, and C), from these equations by using the fact that C, = de /T
and C), = 0h/OT. Thus

for monatomic gases and

C = 51? (hv/kgT)? ehv/knT
A 2 (ehu/k,;’l" - 1)2

for diatomic gases. The variation of C, /R is illustrated schematically in Fig. 1.1.
It is clear from this figure that C,, = 5/2R in the temperature range 50K < T <
600K. In this range, C}, = 7/2R, and thus the ratio of specific heats v = 7/5
for diatomic gases. For monatomic gases, it is easy to show that v = 5/3. in



