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Preface

We believe that the group-theoretic approach to spectral techniques and, in particu-
lar, Fourier analysis, has many advantages, for instance, the possibility for a unified
treatment of various seemingly unrelated classes of signals. This approach allows
to extend the powerful methods of classical Fourier analysis to signals that are de-
fined on very different algebraic structures that reflect the properties of the modelled
phenomenon.

Spectral methods that are based on finite Abelian groups play a very important
role in many applications in signal processing and logic design. In recent years the
interest in developing methods that are based on Finite non-Abelian groups has been
steadily growing, and already, there are many examples of cases where the spectral
methods based only on Abelian groups do not provide the best performance.

This monograph reviews research by the authors in the area of abstract harmonic
analysis on finite non-Abelian groups. Many of the results discussed have already
appeared in somewhat different forms in journals and conference proceedings.

We have aimed for presenting the results here in a consistent and self-contained
way, with a uniform notation and avoiding repetition of well-known results from
abstract harmonic analysis, except when needed for derivation, discussion and ap-
preciation of the results. However, the results are accompanied, where necessary or
appropriate, with a short discussion including comments concerning their relationship
to the existing results in the area.

The purpose of this monograph is to provide a basis for further study in abstract
harmonic analysis on finitc Abelian and non-Abelian groups and its applications.
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Fig. 0.1 Relationships among the chapters.

The monograph will hopefully stimulate new research that results in new methods
and techniques to process signals modelled by functions on finite non-Abelian groups.
Fig. 0.1 shows relationships among the chapters.

RADOMIR S. STANKOVIC, CLAUDIO MORAGA, JAAKKO T. ASTOLA
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