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Preface

A helicopter, with its capability of vertical take-off and landing, is a crucial means of
aerial transportation. In fire-fighting rescue operations and missions for helping sur-
vivors of an earthquake or an avalanche, helicopters have played vital roles. The
expansion of the domain of the application of helicopters, however, faces a few
serious constraints; among them is the relatively poor ride quality due to severe
vibration and noise. Vibration can reduce the fatigue life of structural components and
hence increase the operating costs. Furthermore, environmental consequences of
noise and vibration have limited the range of application and the velocity of heli-
copters. That is why reducing noise and vibration is a major goal in the design of
helicopters.

Smart materials are good candidates for providing a way to control noise and
vibrations in helicopters. Embedded strain sensing and actuation in active structures
can be used to reduce blade vibration, minimize blade vortex interaction, decrease
noise, and improve stability and response characteristics of the helicopter (Traugott
et al. 2005).

Reliable and economically viable design of structures and machine elements is
impossible without the use of accurate and efficient methods of structural analysis.
Such methods should be capable of analyzing real-world problems that involve
different types of materials. While isotropic materials behave identically when
loaded in different directions, anisotropic materials are direction-dependent.
Fiber-reinforced composites are among the latter type of materials and by proper
orientation of fibers with respect to the direction of loading, they'can provide higher
values of strength-to-weight ratio compared to conventional isotropic materials.

Materials may also be classified as passive or active. The usual characteristic of
active materials is that they deform in response to electrical stimuli. The conversion of
electrical input to mechanical output corresponds to the actuator mode of operation
and the resulting deformation is used as mechanical excitation. Conversely, active
materials may generate electrical signals when they are subjected to mechanical
loading and deformation. This is the sensor mode of operation. By embedding such
sensors and actuators in structures such as helicopter rotor blades, the two modes of
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operation (i.e., sensing and actuating) are combined. A control strategy then uses the
sensor output, processes it, and provides necessary input to the actuators in order to
minimize harmful effects such as noise and vibration.

In the linear range of response, small deformations are linearly related to the
imposed loads on a structure; so, doubling a load results in doubling deformation.
However, beyond a certain level of deformation, the linear relationship between
loading and deformation ends and transforms to a geometrically nonlinear relation.
In this nonlinear region, the superposition principle is no longer valid. Therefore,
many of the conventional methods that are used for solving differential equations,
such as splitting the general solution of a non-homogeneous equation into a
homogeneous (natural or transient) and a particular (forced or steady-state) part, are
no longer applicablie, Solving such problems requires the use of alternative methods
such as the perturbation methods.

Various methods have been used for analyzing the mechanical behavior of
structures. Among them, the finite element method (FEM) has been successful in
solving problems with complicated geometry and without the need to accept many
simplifying assumptions. Application of the FEM, however, requires modeling
of the whole structure and calculation of large stiffness and inertia matrices.

An alternative solution technique is the variational asymptotic method (VAM).
This method splits the solution of the three-dimensional (3-D) problem into two
major parts. The first is a two-dimensional (2-D) analysis that develops the
cross-sectional stiffness and inertia matrices as well as the warping functions. These
results can then be used in a 3-D simulation of structures without the need to repeat
the 2-D analysis. The second is a geometrically nonlinear one-dimensional (1-D)
analysis of the beam-like structure along its longitudinal direction. Combining these
two solutions provides the complete 3-D response of the structure. Since VAM
eliminates the need to recalculate the cross-sectional properties, it is a more efficient
solution method compared to the 3-D FEM.

Using VAM and the corresponding cross-sectional and 1-D solutions, this book
covers the elastic response of isotropic and composite beams and rotor blades in geo-
metrically linear and nonlinear statics, as well as nonlinear dynamics situations. The
effects of aerodynamic loading, damping, and embedded actuators are also discussed.

This book is intended as a thorough study of nonlinear elasticity of slender
beams and is targeted to researchers, graduate students, and practicing engineers in
the fields of structural dynamics, aerospace structures, and mechanical engineering.
It broadens readers’ understanding of the nonlinear static and dynamic response of
composite beams, required in many applications such as helicopter rotor blades and
wind turbines, through comprehensive and step-by-step analysis. It provides
graduated analyses of phenomena beginning with the fundamental (static, linear,
isotropic, passive, and clamped) progressing through the complex (dynamic, non-
linear, composite, with actuators, and articulated), and it models both clamped and
hinged rotating beams and blades as well as analyzing beams and blades with
embedded active fiber composites.

The presented static solution can be used independently or to provide the initial
conditions that are needed for performing a dynamic analysis. The considered
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dynamic problems include the analysis of accelerating clamped (hingeless) and
articulated (hinged) rotating blades. Independent numerical solutions for the tran-
sient and the steady-state responses are presented, and as a verification, it is
illustrated that the transient solution converges to the steady-state solution obtained
by the shooting method. Other key topics include calculating the effect of per-
turbing the steady-state solution, coupled nonlinear flap-lag dynamics of a rotating
articulated blade with hinge offset and aerodynamic damping, and static and non-
linear dynamic responses of composite beams with embedded piezocomposite
actuators. The results obtained in each section are verified or justified.

The book starts with an introduction in Chap. 1, which is then followed in Chap.
2 by a review of the VAM and the equations of motion. These equations apply to
beams made of arbitrary materials and cross sections. In the rest of the book, the
equations of motion are used for solving a set of progressively complex problems
involving the dynamics of rotating blades.

Chapter 3 is dedicated to the linear static analysis of isotropic and composite
beams, and it is followed by Chap. 4 that presents the nonlinear static analysis of
such structures. In Chap. 4, foreshortening which is an inherently nonlinear phe-
nomenon is used for the verification of the results.

Chapter 5 is on the transient nonlinear dynamics of a clamped (hingeless) blade
that rotates at variable speed. The rotor blade starts its motion from rest and after an
acceleration interval converges to a steady-state condition. In order to solve this
problem, an explicit (direct) integration algorithm is developed that utilizes the
finite difference and the perturbation methods. A computer program that uses this
algorithm solves the transient form of the nonlinear differential equations of motion
and provides the elasto-dynamic response of the rotating composite blade. Using
this method, the steady-state behavior can also be obtained. However, it is only
possible after the whole transient response of the blade is calculated.

In Chap. 6, an alternative method for obtaining the steady-state behavior of a
rotating blade is presented. This method does not require calculating the transient
response in advance. Instead, it solves a boundary value problem that is based on
the steady-state form of the nonlinear differential equations of a beam. This problem
is then converted to a series of initial value problems which are solved by iterating
an implicit (indirect) integration method. In each iteration, the estimations for the
unknown initial conditions are improved by the use of the Newton—Raphson
algorithm and the shooting method. The solution is repeated and its convergence is
checked at every step. When a convergence criterion is satisfiéd, the correct solu-
tion of the boundary value problem and the steady-state response of the blade are
obtained. The calculated response includes the steady-state values of forces,
moments, velocities, and angular velocities along the blade. These results compare
very well with the solution obtained in Chap. 5 as the transient solution discussed in
Chap. 5 converges to the steady-state solution of Chap. 6. Having calculated the
steady-state response, the effect of imposing input perturbations on the blade (when
it is already in its steady-state condition) is analyzed. Small perturbations are
considered; therefore, the solution is valid only near the steady-state response.
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The rotating blades considered in Chaps. 5 and 6 are all clamped (hingeless). In
Chap. 7, the dynamics of rotating articulated (hinged) blades, both rigid and elastic,
is discussed. It starts with an introduction on the extended Euler equations of
motion and continues by using these equations to calculate the coupled nonlinear
flap-lag rigid body dynamics of articulated blades. The rigid body dynamics at the
root of the blade is used to provide the boundary conditions for the case
of the elastic rotating articulated blade. These boundary conditions together with the
solution method developed in Chap. 5 are implemented to calculate the nonlinear
dynamic response of an accelerating articulated blade. The solution is shown to be
in good agreement with approximate formulas for the axial force and with the
implemented boundary conditions.

Embedded actuators are used in rotating blades to control their shape in order to
reduce noise and vibrations or to gain other satisfactory performance such as higher
lift forces. In Chap. 8, the effect of inclusion of embedded piezocomposite actuators
in a composite beam structure is analyzed. Both geometrically nonlinear static and
dynamic cases are considered and the response sensitivity to the performance of
actuators oriented at various directions along the blade is evaluated. Specifically,
the steady-state force and moment components generated in the rotating blade are
calculated. Such results can be used to control the elasto-dynamic response of
rotating blades.

This book is based on my second Ph.D. thesis in mechanical engineering that I
worked on in Carleton University in Ottawa. However, in this book, I also use a few
solution techniques that I had developed in my earlier research for my first Ph.D. in
mechanical engineering in Sharif University of Technology in Tehran. That
research dealt with the dynamics of structures subjected to moving loads.

There have been a number of people that have contributed to this book in one
way or another. First, I sincerely thank Professor Fred Nitzsche, for introducing
Professor Hodges’ fascinating book, Hodges (2006), to me. This is clearly the best
resource for understanding the VAM. Also during the research that led to this book,
I have had the privilege of receiving plenty of valuable hints and suggestions from
Professors Dewey H. Hodges of Georgia Institute of Technology, Wenbin Yu of
Purdue University, Carlos E.S. Cesnik of University of Michigan, and Rafael
Palacios of Imperial College for which I am grateful. The constructive comments
received from four anonymous reviewers of an earlier draft of this book are also
thankfully appreciated.

I also gratefully acknowledge the Alexander Graham Bell Canada Graduate
Scholarship Award (CGS) by the Natural Science and Engineering Research
Council of Canada (NSERC), the J.Y. and E'W. Wong Research Award in
Mechanical/Aerospace Engineering, and the Research Assistantship Award for
carrying out my Ph.D. research that ultimately led to this publication.

Last, but not least, I appreciate the love and support that I have received from my
wife Marjaneh, my daughter Mehrnaz, and my son Ali during all the years that I
have been working on this book and the corresponding research.

Mehrdaad Ghorashi, Ph.D., P.E.
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Nomenclature

o

Cross-sectional area of the undeformed beam in the x,—x; plane
Deformed reference frame (B, is perpendicular to the plane of
deformed cross section of the beam and other two base vectors on this
plane)

Undeformed reference frame (b, is perpendicular to the plane of
undeformed cross section of the beam and other two base vectors on
this plane)

Finite rotation tensor

Material matrix (Chap. 2)

Vector of electric displacements (Chap. 8)

Piezoelectric moduli in tensor form (i, j, k = 1, 2, 3)

Electric field (Chap. 8)

Moduli of elasticity (i = 1, 2, 3)

Hinge offset ratio (offset as a fraction of the rotor radius, R)
Permutation symbol (i, j, k = 1, 2, 3)

(1 0 o]

Elements of the column matrix of internal forces (i = 1, 2, 3)
Applied forces vector per unit length

Shear moduli (i, j = 1, 2, 3)

Determinant of the metric tensor in curvilinear coordinates (Chap. 2)
Current boundary value at the tip (Chap. 6)

Sectional angular momenta vector

Cross-sectional mass moment of inertia

Cross-sectional product of inertia

Deformed beam curvature vector = k + x

Undeformed beam curvature vector

Length of the beam

Lift force per unit length (Chap. 7)

Elements of the column matrix of internal moments (i = 1, 2, 3)
Applied moments vector per unit length
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N
P
R
S
S(xa, x3)

Nomenclature

Number of nodes

Sectional linear momenta vector

Rotor radius

Cross-sectional stiffness matrix

Matrix of the FEM shape functions

Time

Strain energy per unit length

Displacement field in the b; (i = 1, 2, 3) reference frame

Vector of nodal warping displacements (Chap. 2)

Velocity vector field in the B; (i = 1, 2, 3) reference frame

Velocity field in the b; (i = 1, 2, 3) reference frame

Warping displacement components (i = 1, 2, 3)

Global system of coordinates (i = 1, 2, 3)

Axis along the beam

Cross-sectional axes

Offsets from the reference line of the cross-sectional mass center
(coordinates of the cross-sectional centroid with respect to the shear
center of the cross section)

Spanwise position of the mass center

Magnitude of the rotation used in the Rodrigues parameters (Chap. 2)
Assumed initial conditions at the root (Chap. 6)

Boundary conditions at the tip (Chap. 6)

Flap angle (Chap. 7)

Strain tensor = LF” 21"12 21"13 ng 21"23 F33JT

[vu 272 2713])" (Chap. 2)

Lock number (Chap. 7)

Extension of the reference line (the bar indicates that transversal shear
deformation has been neglected: 7,, = 7,3 = 0)

3 x 3 identity matrix

Virtual displacement vector (the bar indicates that it need not be the
variation of a functional)

Virtual rotation vector (the bar indicates that it need not be the variation
of a functional)

Generalized strain in the classical theory = [}, K K K3 ]T (the
bar indicates that transversal shear deformation has been neglected:
Tiz2=T13=0)

Matrix of dielectric permittivity at constant strain

Rodrigues parameters = [0; 6, 63]; 6; = 2¢;tan (%)

Elastic twist

Elastic bending curvatures (i = 2, 3)

Mass per unit length

Poisson’s ratios (i, j = 1, 2, 3)

Mass density

Stress tensor components = |_0'11 12 013 022 023 0'33_!T
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Kernel matrix

Angular velocity vector in the B; (i = 1, 2, 3) reference frame
Angular velocity vector in the b; (i = 1, 2, 3) reference frame
Lead-lag angle

Perturbations in space

€ 0E

Perturbations in time

L

-~ ~ 7N
(
S— N

(o) ‘39(']) = derivative w.r.t. the axis along the undeformed reference line
(o) Derivative w.r.t. time, ¢
(de) The bar indicates that it need not be the variation of a functional
(8); —ejik(®),: The cross product operator (transformation from a vector to
its dual skew-symmetric matrix)
For two vectors a and b,
0 —d3 as bl
ab= | a3 0 —a by y =axb
—as a) 0 b3
a
(o) f dxadx
A
{(®)) ((0)/8) f )V/8dx2dx3, /8 = 1 — xok3 — x3k2
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Chapter 1
Introduction

1.1 Preliminary Remarks

The analysis of structures that have one dimension much larger than the other two
can be done by modeling them as beams. A beam model, also called a
one-dimensional (1-D) model, provides the advantage of simplicity of analysis and
faster solution. Such a modeling is widely used in applications like helicopter rotor
blades and wind turbine blades. However, one should always assure that the simpler
I-D model is able to provide a satisfactory picture of the truly three-dimensional
(3-D) real-life problem.

In many engineering applications where isotropic materials are used and the
member under consideration has simple geometry and undergoes small deforma-
tions, a classical beam theory can be used to provide an adequate solution for the
3-D problem. However, there are severe limitations for the use of classical beam
theories in today’s engineering applications.

The first limitation is the replacement of isotropic materials by composite
materials in many applications including helicopter rotor blades. A major reason for
the growing use of composites as the materials of choice is that they provide much
higher strength-to-weight ratios compared to isotropic materials. The second limi-
tation is that structural members in many engineering applications have complex
geometry that includes initial curvature.

The third limitation is due to the small deformations assumption that is a major
simplifying assumption in classical beam theories. The main impact of this
assumption is that all formulations become linear, and therefore, one may use the
superposition principle for solving problems. However, many lightweight and
thin-walled structural members undergo large deflections (even though at small
strain) when subjected to service loads. An example is the aeroelastic analysis of
high-altitude, long-endurance (HALE) aircraft that features high aspect ratio flex-
ible wings that requires the analysis of structural geometrical nonlinearities and
dynamic stall (Jian and Jinwu 2009). As a result, the nonlinear behavior of such
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