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EQUIVALENTS OF THE RIEMANN HYPOTHESIS
Volume Two: Analytic Equivalents

The Riemann hypothesis (RH) is perhaps the most important outstanding problem
in mathematics. This two-volume text presents the main known equivalents to RH
using analytic and computational methods. The books are gentle on the reader with
definitions repeated, proofs split into logical sections, and graphical descriptions of
the relations between different results. They also include extensive tables,
supplementary computational tools, and open problems suitable for research.
Accompanying software is free to download.

These books will interest mathematicians who wish to update their knowledge,
graduate and senior undergraduate students seeking accessible research problems in
number theory, and others who want to explore and extend results computationally.
Each volume can be read independently.

Volume 1 presents classical and modern arithmetic equivalents to RH, with some
analytic methods. Volume 2 covers equivalences with a strong analytic orientation,
supported by an extensive set of appendices containing fully developed proofs.

Encyclopedia of Mathematics and Its Applications

This series is devoted to significant topics or themes that have wide application in
mathematics or mathematical science and for which a detailed development of the
abstract theory is less important than a thorough and concrete exploration of the
implications and applications.

Books in the Encyclopedia of Mathematics and Its Applications cover their
subjects comprehensively. Less important results may be summarized as exercises
at the ends of chapters. For technicalities, readers can be referred to the
bibliography, which is expected to be comprehensive. As a result, volumes are
encyclopedic references or manageable guides to major subjects.
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RH is a precise statement, and in one sense what it means is clear, but what
it is connected with, what it implies, where it comes from, can be very un-
obvious.

Martin Huxley



Preface

Why have these two volumes on equivalences to the Riemann hypothesis
been written? Many would say that the Riemann hypothesis (RH) is the most
noteworthy problem in all of mathematics. This is not only because of its
relationship to the distribution of prime numbers, the fundamental building
blocks of arithmetic, but also because there exist a host of related conjectures
that will be resolved if RH is proved to be true and which will be proved
to be false if the converse is demonstrated. These are the RH equivalences.
The lists of equivalent conjectures have continued to grow ever since the
hypothesis was first enunciated, over 150 years ago.

The many attacks on RH that have been reported, the numerous failed
attempts, and the efforts of the many whose work has remained obscure, have
underlined the problem’s singular nature.

The aim of these volumes is to give graduate students and number theory
researchers easy access to these methods and results in order that they might
build on them. To this end, complete proofs have been included wherever
possible, so readers might judge for themselves their depth and crucial
steps. In a few places the more philosophical thoughts of experts have been
reported. These for the most part have been paraphrased or quoted from the
books of du Sautoy [215] or Sabbagh [210].

The two volumes are distinct, with a small amount of overlap. The first,
Volume One [39], has an arithmetic orientation, with some analytic methods,
especially those relying on the manipulation of inequalities. The equivalences
found there are those of Caveney—Nicolas—Sondow, Franel-Landau, Hilbert—
Pélya, Lagarias, Littlewood, Landau, Nicolas, Nazardonyavi—Yakubovich,
Ramanujan—Robin, Redheffer, Shapiro, Shoenfeld, Spira and Shapiro. In
addition, Volume One has criteria based on the divisibility graph, Dirichlet
eta function and the symmetric group. There is a supporting Mathematica™
package, RHpack.

xvii



Xviii Preface

Volume Two, this book, contains equivalences with a strong analytic
orientation. To support these, there is an extensive set of appendices
containing fully developed proofs of most results. The equivalences set out
are the series criteria of Riesz, Hardy-Littlewood and Bdez-Duarte, the L,
space condition of Beurling, the Sondow—Dumitrescu criterion based on
the monotonicity of |£(s)|, the inequality criterion of Li and its extension
by Lagarias and Bombieri, the de Bruijn—-Newman constant criterion, the
orthogonal polynomial criterion of Cardon—-Roberts, the cyclotomic polyno-
mial criterion of Amoroso, the integral equations of Sekatskii—Beltraminelli—
Merlini, Salem and Levinson, the explicit-formula-based inequality of Weil,
the variational criterion of Bombieri, the discrete measures of Verjovsky,
the horocycle-measure-based criterion of Zagier, the Hermitian forms of
Yoshida, and smooth integer estimate ranges of Hildebrand. In addition,
Bombieri’s proof of Weil’s explicit formula is given, as is a discussion of
the Weil conjectures and a proof of the conjectures in the case of elliptic
curves.

In the case of the general Riemann hypothesis (GRH) for Dirichlet
L-functions, the Titchmarsh criterion is given, as well as proofs of the
Bombieri—Vinogradov and Gallagher theorems and a range of their appli-
cations. There is a small supporting Mathematica package, GRHpack, with
access details below.

To aid the reader, definitions are often repeated and major steps in proofs
are numbered to give a clear indication of the main parts and allow for easy
proof internal referencing. When possible, errors in the literature have been
corrected. Where a proof has not been verified, either because this author
was not able to fill gaps in the argument, or because it was incorrect, it
has not been included. There is a website for errata and corrigenda, and
readers are encouraged to communicate with the author in this regard at
kab@waikato.ac.nz. The website is linked to the author’s homepage:
www.math.waikato.ac.nz/~kab.

Also linked to this website is the suite of Marhematica programs, called
GRHpack, related to the material in this volume, which 1s available for
free download. Instructions on how to download the software are given in
Appendix L.

Many people have assisted with the development and production of
these volumes. Without their help and support, the work would not have
been possible, and certainly not completed in a reasonable period of time.
They include Sir Michael Berry, Enrico Bombieri, Jude Broughan, George
Csordas, Daniel Delbourgo, Tomas Garcia Ferrari, Pat Gallagher, Adolf
Hildebrand, Geoff Holmes, Stephen Joe, Jeff Lagarias, Wayne Smith, Tim
Trudgian, John Turner and Michael Wilson. The support of the University of
Waikato and especially its Faculty of Computing and Mathematical Sciences
and Department of Mathematics and Statistics has been absolutely essential.
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Cambridge University Press has also provided much encouragement and
support, especially Roger Astley and Clare Dennison. Last, but not least, I
am grateful for my family’s belief in me and support of my work.
Kevin Broughan
December 2016
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