GUIDE TO THE

PERSONAL GOMPUTER

WALTER SIEONOWIZ

Gllml T0 THE

WALTER SIKONOWIZ

A Micro Text/ McGraw-Hill Copublication .
New York, NY.

Library of Congress Catalog Card Number: 82-062819
. ISBN: 0-07-057484-7

Chapters Six and Sixteen were contributed by Daniel Lewart

Copyright © 1983 by Micro Text Publications, Inc. All rights reserved.
Printed in the United States of America. Except as permitted under the
United States Copyright Act of 1976, no part of this book may be
reproducea or distributed in any form or by any means, or stored in a data
base o. retrieval system, without the prior written permission of the
publisher.

Micro Text Publications, Inc.

McGraw-Hill Book Company

1221 Avenue of the Americas

New York, N.Y. 10020

While every precaution has been taken in preparation of the programs of

this book, neither the publisher nor the author will assume any liability
resulting directly or indirectly from use of the programs listed within.

IBM is a registered trademark of International Business Machines Corporation
Apple I is a registered trademark of Apple Computer Co.

WordStar is a registered trademark of MicroPro International Corporation
Flight Simulator is a registered trademark of Microsoft Corporation.
Spinwriter is a registered trademark of NEC Information S:'stems, Inc.
DMP-29 and DMP-40 are registered trademarks of Houston Instrument, Inc.
dBase II is a registered trademark of Ashton-Tate, Inc.

Pam Edstrom of Microsoft Corporation and Janice McGowan of MicroPro

International were heipful in preparing this book, and Michael Bahler assisted in
cover photography.

Preface

The introduction of the IBM Personal Computer in the waning days of 1981 was a
newsworthy event on two counts. Not only did it usher in a new era of low-cost
16-bit computing; it also marked the entry of America’s largest and best-known
mainframe computer manufacturer into the personal-computing market.

Public response to the new PC was enthusiastic, and with good reason. Here
was a machine that when fully configured with two disk drives and a quarter
megabyte of main memory could be had for the relatively modest sum of about
$4000. Moreover, the PC was backed by a large and well respected service orga-
nization — something altogether too rare in the world of microcomputers. Is it any
wonder, then, that the IBM Personal Computer, doubly blessed with an enviable
pedigree and solid after-sale support, should have become an immediate success?

To even the most casual observer of the microcomputer scene, it is quite appa-
rent that the people buying PCs today are, on the average, a different breed from
those who bought Apples and Ataris in years past. A growing percentage of the
people now buying computers are doing so for business or professional reasons
rather than for recreation (and this applies not just to PC buyers, but to others as
well). Granted, even the ‘‘serious’’ user may get the urge to blast a Klingon now
and then, but in the main, interest has shifted from fun and games to professional
advancement.

With that shift in interest has come a change in temperament on the part of the
typical microcomputer purchaser. The new breed of buyer is not a hobbyist with
infinite patience, or an electronics engineer with experience in digital design. He
simply wants to get his computer running and keep it that way with as few prob-
lems as possible. It is to that person that this PC user’s guide is dedicated.

This book should appeal to two classes of reader: the person just contemplating
the purchase of a Personal Computer, and the person who already cwns one. If
you like the PC but wonder whether its purchase would be justified, you can find
the answers to most of your questions right here. And if you already own a PC but
find IBM’s documentation a little above your head, the book in hand may be just
what you need.

Chapter One opens with an overview of Personal Computer hardware (i.e.,
mechanical and electronic equipment). Then, Chapter Two introduces some of the
rudiments of programming in the BASIC language. Chapter Three carries things
one step farther by showing how control passes from statement to statement in the
course of a program’s execution. It also offers suggestions on how to write prog-

ram code that is straightforward and readable — not a twisted mass of spaghetti
logic.

The Personal Computer’s sophisticated yet easy-to-use opgrating system, which
controls data transfer, storage, and retrieval, is the topic of Chapter Four. Chapter
Five carries on in the same spirit by showing how the functions and capabilities of
the DOS (the disk operating, system) can be called up from BASIC to allow the
storage of programs and data on magnetic disks. Chapter Six discusses IBM’s
recently released DOS 2.0, and the enhancements it adds to an already powerful
operating system.

Chapter Seven provides a thorough grounding in character strings and the va-
rious ways in which they can be manipulated. Number crunching, the program-
mer’s amusing way of referring to numerical computation, is the topic of-Chapter
Eight. Next, Chapter Nine provides an introduction to the writing of interactive
programs that accept keyboard input from an operator during the course of their
execution. Chapter Ten complements its predecessor by showing how text can be
placed at will on the video screen, thus providing the operator feedback so neces-
sary in an interactive program.

Chapter Eleven should be fun for all; it deals with the technigues of color
graphics and simple animation. We get down to serious business, that of debug-
ging and testing a program, in Chapter Twelve. It is easy to give debugging cnd
testing short shrift because they really are tedious, and often exasperating. Never-
theless, the conscientious extermination of bugs is necessary if reliable programs
are to be written.

Chapter Thirteen covers the IBM Parallel Printer Adapter and how it may be
interfaced with a suitable printer to produce hard copy (i.e., printed records). In
Chapter Fourteen we examine the IBM Asynchronous Communication Adaptsr
and show how it can be used to link the PC with modems, other computers, and
serially interfaced printers. Chapter Fifteen provides a lighthearted look at the
production of sound and music (written, incidentally, by someone with no musical
talent at all; caveat lector).

Chapter Sixteen adds more to our knowledge of BASIC by discussing the spe-
cial features of BASIC 2.0.

Finally, writing programs that make good use of a joystick or light pen is the
topic of Chapter Seventeen. Graphics applications probably come most readily to
mind, but there are other interesting things to be done as well.

So much for the preliminaries. It’s now time to fire up your PC, or your im-
agination if no machine is at hand, and get on with the rest of this book!

200NN E W N

el e =
N AU A W=D

CONTENTS

« PREFACE
« Getting "Acquainted with the Sys®m% 0o oo et 1
. An Introduction to BASIC Programming 21
. Establishing the Flow of Control s e s ST B8 53
- The Disk Operating'SYSTEM ... o5 come 55 ci e o0 oed PR 4o T 4 77
o Pisk Access-Trom BASICo0viimivesgnabonoms empesssibnnts 103
ERIIOS VErBION 2,0, . cc0 s e covvnsinmn o niosisislsin ity oisions oe sis vo s s s 137
PO MIRDIDMESEIONE. . . . <0 o oo dveenanstanasnsihiossdas s st s 165
B DITIHDRT - CIUHOCRIIE, . i /% e 5555 s ime oo aho e ks 038 S15E8 51 505 5 sorp 1 s S T7
prdieyboard Input Programiming . o5 c.e.weevow e sinsis o sins o dgagi sl . 191
EPuthing Text o the SCIEEN . - . -« v wsmi v o 5 5w we 55w o 55 s UM Sps 199
B COIOLAGTAPIIES .- 5.6 v 50 e womiatins w10 545 S5 516 ot s it w60 Vs, TR AR 215
& Frogram Debugging and TeStNE , . o o s cov cnoiivn s omac s oo oo Rl 231
serphe Parallel Printer POIt.o v cvo Cvvinvnins on’s n o vois v sagion oisioio a8 241
. Serial Asynchronous Communication 249
PO AOIIVISIC - s ioh s oy 55 G e won ovs e o 10 8466 555 ol iy by 30a s 261
ABABIC Version Q-0 3pR0az. . .. ciis oiiwonensishevess on oo e s s 273
< Using the Light Pen aBRIOYSUEKS ... oo cpvevnnnomimsnss Saems 295
BIBLIOGRAPHY . .. o0 i 00 oo din i i@ e e i ddinns 303

1. Getting Acquainted with
the System

Any complex system — whether it be electronic, biological, or political — must be
viewed on multiple levels in order to be understood. So it is with the IBM Personal
Computer. We have to consider hardware (electronic and mechanical components)
and software (programs, or sequences of instructions) to get a balanced perspective
on the PC. Moreover, hardware and software are themselves composed of interesting
sublevels that must also be taken into account. Fortunately, the hardware/software
hierarchy of the PC is not at all difficult to understand given the proper background
and incentive. That is what this introductory chapter is all about.

A Hardware Overview

Illustrated in Fig. 1-1 are the major hardware components of the IBM Personal
Computer. The large oblong box with the rectangular recess in its front face is known
as the System Unit. It houses most of the electronic circuits of the PC, including the
central processor, main memory, and a pair of 5.25-inch disk drives, which provide
mass storage of programs and data.

%

Fig. 1-1. Components of the IBM Personal Computer system include (from left to right) an 80
cps dot-matrix printer, a high-resolution video monitor, the System Unit containing two disk
drives in addition to memory and processor, and a detached, tiltable keyboard with 83 keys.
(Courtesy of IBM Corp.)

2 GUIDE TO THE IBM PERSONAL COMPUTER

Perched atop the System Unit is the IBM high-resolution video monitor. It displays
25 lines of text with a maximum line length of 80 characters. The IBM monitor is
limited to monochrome reproduction of text and simple line graphics, but by adding a
suitable adapter card and a color video monitor, it is possible to display high-
resolution color graphics in addition to text.

Also visible in Fig. 1-1 is the 83-key detached keyboard that constitutes a user’s
primary interface with the PC. A six-foot coiled cord links the keyboard with the
System Unit and allows considerable flexibility in the keyboard’s placement — on a
desk, in a lap, or wherever else might be convenient. As with all IBM keyboards, this
one has the tactile and audible feedback and careful design that make typing a
pleasure.

To the left of the keyboard in Fig. 1-1 is the optional IBM 80 cps (characters-per-
second) dot-matrix printer. This is a thinly disguised versicn of the familiar Epson
MX-80, the most popular printer in personal computing. Most applications will be
well served by this* low-cost machine, but for those applications such as word
processing that demand printed copy of a higher caliber, there are a variety of
daisy-wheel printers on the market that will interface readily with the PC.

Figure 1-2 provides a close-up view of the System Unit with its top cover removed.
In the upper-right-hand comer of the photograph we find a 63.5-watt switch-mode
power supply that furnishes all the voltages required by the system. Below the power
supply is a pair of 5.25-inch disk drives. At his option, a user can have one, two,
three, or four disk drives, although no more than two standard-height drives will fit
inside the System Unit. The remainder must be mounted externally in a suitable
chassis.

Fig. 1-2. Interior view of
the System Unit with its
top removed. Two disk
drives are visible in the
lower right-hand corner of
the photo, while the upper
right-hand corner is
occupied by a fan-cooled
power supply. The PC's
System Board mounts
horizontally in the left half
of the chassis, and into
this circuit board five
auxiliary adapters have
been plugged. (Courtesy
: of IBM Corp.)

)

While it may be difficult to see in Fig. 1-2, the floor of the left half of the System
Unit is covered by an 8 X 10 inch printed-circuit board, the so-called System Board,
on which is mounted a considerable portion of the PC’s electronics. This includes the
CPU (central processing unit), the random-access memory, and the read-only mem-
ory containing the BASIC interpreter. (RAM and ROM are forms of semiconductor

GETTING ACQUAINTED WITH THE SYSTEM 3

memory. Do not despair; these and other strange words that keep creeping into the
text will be discussed at length in the next couple of sections.)

The System Board also bears five sockets, into which various auxiliary adapter
boards can be plugged to extend the capabilities of the PC. If Fig. 1-2 is examined
carefully, five adapter boards mounted perpendicular to the System Board can be seen
at the extreme left of the photo. Also visible in the lower lefi-hand corner is a small
speaker, through which the PC beeps and generates musical sounds.

Figure 1-3 shows the back side of the System Unit. Notice the five slots on the right
side of the panel. Connectors mounted on the various plug-in adapters can protrude
through these slots, thus allowing electrical connections to be made between the
boards and external equipment like a video monitor or printer. If a slot is unoccupied,
it can be covered by a metal plate to prevent the escape of RF radiation (which can
interfere with radio and television reception) and keep dust out of the cabinet. The
grille at the center of the System Unit's rear panel hides a cooling fan.

Fig. 1-3. Rear view of the
System Unit. Siots on the
right allow sockets
mounted on auxiliary
adapter boards to protrude
through the steel chassis.
If not in use, an access
slot may be covered to
prevent the escape of RF
radiation. (Courtesy of
IBM Corp.)

Bits, Bytes and Words

Let us now examine the PC, and computers in general on a more abstract level — that
of data representation. The smallest unit of data in any digital computer is the bit, or
binary digit. A bit can assume one of two values, 0 or |, and no other. If we want to
represent larger numbers, we must combine bits into words. For example, a 2-bit data
word can have four possible values — 00, 01, 10, or 11 — while a 3-bit word can
have eight: 000, 001, 010, 011, 100, 101, 110, or 111. In general, the number of
unique values that can be assumed by a word of nbits is given by 2 to the nth power, or
2 multiplied by itself n times.

A word of eight bits is a special entity in computing, and in recognition of its
importance it bears a unique name: the byte. Even though the IBM PC is a 16-bit
computer, it uses byte-size data, which makes it an interesting hybrid. In an upcom-
ing discussion of the 8088 microprocessor, around which the PC was designed, we
will have occasion to examine some of the advantages and disadvantages of using
byte-size data in a supposedly 16-bit machine. For the time being, however, let us just
note that the byte is a very important entity, one that will crop up again and again in
the pages ahead, and that it would be wise to commit to memory here and now the
byte’s definition as a word consisting of eight bits.

4 GUIDE TO THE IBM PERSONAL COMPUTER

NUMBERS

Binary words, which are in truth the currency of information exchange within a
computer, may represent any conceivable form of data. For example, numbers are
obviously essential to a computer, and they can be encoded in a variety of ways, as we
shall see in Chapter Eight.

For the moment, let us look at just one method of representing numbers, the pure
binary code. A number expressed in binary form can easily be made comprehensible
to a decimal-oriented mind. One multiplies the status of each bit (1 or 0) by the
significance of the column it occupies and sums the values obtained to arrive at a
decimal (base 10) result. For example, consider the conversion of 10011 to decimal
form:

Decimal Significance: 16
1

8 4 21
Binary Bit Value: 0011

Since multiplying by O yields O, we need only sum the decimal values correspond-
ing to the columns in which a 1 appears. Thus we find that:

16+2+1 = 19

Once they become familiar, small binary numbers are almost as easy to read as
decimal. The large ones, of course, are so long that they cannot be deciphered at a
glance, and for that reason it is common for programmers to use octal (base 8) and
hexadecimal (base 16) numbers in preference to binary. We will have occasion to talk
of the octal and hexadecimal number systems later on. For the present, let us
emphasize that inside the computer all numbers are represented in binary form.

ALPHANUMERIC CHARACTERS

Alphanumeric characters (letters and numbers) of the sort that make up everyday
English text are another important class of information that can be encoded as digital
words. The code used for this purpose is a universally accepted one known as ASCII
(American Standard Code for Information Interchange). Seven bits are used to
encode'96 printable characters and 32 non-printing control characters that function as
commands within a computer. The control codes have values from 0 to 31, while the
printable characters (a, b, c...1, 2, 3...etc.) have ASCII codes from 32 to 127. (It is
convenient to speak of ASCII codes in decimal terms, but remember that the
computer must deal with them in binary form.)

IBM has long used its own proprietary code (known as EBCDIC) for representing

GETTING ACQUAINTED WITH THE SYSTEM 5

alphanumeric characters, but in building the PC they broke with tradition and adopted
ASCII. However, they extended it to 8 bits (a whole byte) to allow an extra 128
symbols to be encoded. These include Greek letters, mathematical symbols, and
assorted pictograms (hearts, diamonds, little smiling faces, etc.). This gives the PC
user a 256-character symbol set from which to construct imaginative displays of all
sorts.

TRUE AND FALSE

In addition to alphanumeric characters, digital words may also be used to encode truth
and falsity. As the reader may know, it is common in mathematical logic for a 1 to
represent a TRUE condition, and for a 0 to represent a FALSE one. Within a
computer, whole bytes are typically used to encode truth and falsity, since data are
accessed (i.e., stored and retrieved) in byte-size chunks.

For instance, a computer might interpret a byte whose value was greater than or
equal to a binary 128 (10000000) as TRUE, and one whose value was less than or
equal to 127 (01111111) as FALSE. Note that it is the status of the high-order bit in
this example that determines truth or falsity; the rest are irrelevant. In practice, any
one of the bits of a byte might be singled out, though the high-order bit is the one
commonly used. Computers make decisions on the basis of TRUE/FALSE data, and
the results of those decisions may likewise be represented in TRUE/FALSE form. -

INSTRUCTIONS

Instruction codes are yet another form of data that can be represented by a digital
word. Such codes are essential in a computer because they tell the CPU (central
processing unit) what to do and when to do it. A sequence of instruction codes
representing the step-by-step solution of a problem is known as a program.

It is the job of a computer programmer to specify useful sequences of instruction
codes and to see that they are correctly stored in the memory of a computer.
Unfortunately, the boring sameness of binary codes makes programming in machine
language (the computer’s binary instruction set) a difficult chore. To make program-
ming faster and simpler, high-level languages like BASIC, Fortran and PL/1 have
been developed. These languages allow programs to be written as sequences of easily
understood English-like statements and mathematical expressions. Eventually,
however, all programs written in a high-level language must be translated to machine
code, which is the only language a computer understands.

DIFFERENTIATING BETWEEN DATA TYPES

Thus far we have examined four different types of data likely to be found in a
computer: numbers, alphanumeric symbols, TRUE/FALSE data, and instruction

6 GUIDE TQ, THE IBM PERSONAL COMPUTER

codes. Given a particular byte of data, is it possible to tell which of the four categories
it fits into simply by looking at it? The answer is no; there are no telltale signs that
identify a data word as belonging to a particular class of information.

The central processing unit of a computer will interpret a data word in a manner
consistent with what it expects that data word to be at a given instant. Sequence is
everything. If the CPU fetches what it presumes to be an instruction, it will interpret
that word as an instruction, regardless of what the programmer may have intended.
One of the obligations of programming at the machine-code level, therefore, is seeing
to it that data are stored in the proper order in a computer’s memory. Using a
high-level language like BASIC frees the programmer from such seemingly trivial
details and allows him to concentrate on the larger issues before him.

" PHYSICAL REPRESENTATION OF DATA

The ones and zeros we have been discussing are convenient abstractions, and nothing
more. Inside the computer, data must be represented by some physical quantity in
order for the computer to do any work. Most of the time, ones and ‘zeros are
represented by voltage levels, with the higher voltage corresponding to a 1, and the
lower voltage to a 0. (Sometimes the situation is reversed. As long as a convention is
agreed upon and maintained, either system is practical.)

Voltage levels are not the only means of encoding data. On magnetic disks or
tapes, bits of information are stored as reversals in the orientation of a magnetic field
within a thin layer of iron oxide. Optical-disc storage systems, which should be
commercially available by the end of 1984, will store data in the form of tiny pits
burned by a laser into a thin fiim of tellurium. We could go on, but the point has been
made: like butterflies, our ones and zeros may metamorphose repeatedly on their
journey through an information-processing system.

System Organization

Having gained an appreciation for the fine structure of computer organization, we are
now ready to move up to the system level. Complex though the PC’s hardware may
be, it yields readily enough to analysis in terms of a small number of semi-
autonomous function blocks. Figure 1-4 illustrates the important modules that make
up the PC in schematic form. The rest of this section will discuss each module in turn
and show how it contributes to the PC’s overall operation.

SEMICONDUCTOR MEMORY

The Personal Computér uses two types of semiconductor memory, known respective-
ly as ROM (read-only memory) and RAM (random-access memory). We will
consider RAM first.

GETTING ACQUAINTED WITH THE SYSTEM 7

SEMICONDUCTOR
MEMORY
OPTIONAL .
cPu RAM ROM
€O-PROCESSOR ASYNCHRONOUS PARA

» LLEL
8088 |. 8087 FOEESY i COMMUNIC ATIONS PRINTER
ADAPTER ADAPTER

I 1 1 1 1

Q sus

o b

KEYBOARD o- su MONOCHROME OR GAME CASSETTE

INTERFACE CONTROL INTERFACE
COLOR/GRAPHICS
LoGIC IDA'T!. DIS/DLAV ADAPTER LOGIC

= é s, @ @

Fig. 1-4. Logical organization of the Personal Computer. A bus consisting of numerous,
parallel electrical conductors shutties digital information back and forth between the various
modules that make up the system. The operation of these modules is coordinated and
controlled by the CPU, or central processing unit.

Each individual storage site or address in RAM can be accessed independently of
all other sites — hence the name random-access memory. It may be convenient to
think of RAM as a cluster of mailboxes such as might be found in a hotel cr office.
Most likely each box will have a unique number (address) on it for the sake of
identification. The letters contained in these mailboxes are analogous to the data
stored in RAM. Obviously, we can stuff a letter into any box or remove it without
concerning ourselves in the least with the contents of neighboring boxes. So it is with
data access in RAM.

The foregoing observations probably sound unremarkable, but they are significant
nevertheless. To see why, consider a sequential-access storage system like magnetic
tape. The amount of time needed to retrieve a given parcel of data stored on tape
depends on the separation between the section of tape initially under the tape head and
the section that contains the data desired. Thus, data placement and access time are
inextricably entwined. Of course, it really is unfair to compare a slow mechanical
system like tape with electronic RAM. But even when sequential access is im-
plemented in silicon, yielding an integrated circuit known as a shift register, the
accessing of particular bits of data is still clumsy. For that reason, the main memory
of a computer is always constructed of RAM.

RAM has one notable shortcoming, its volatility. Once power to the computer has
been shut off, all data stored in RAM are lost. Thus, RAM must be supplemented by a
more permanent form of storage if data are to be saved for future use. In the Personal
Computer, long-term storage is provided by magnetic disks.

8 GUIDE TO THE IBM PERSONAL COMPUTER

The newer version of the IBM PC comes with a minimum of 64 kilobytes of RAM
installed on the System Board. (A kilobyte is 1,024 bytes, 2.4% more than common
sense would suggest. Actually, 1,024 is 2 raised to the tenth power, a convenient
number in digital systems. Whether this is reason enough to subvert the language is a
matter of opinion.) RAM capacity of the PC as it comes from the box can easily be
expanded to 256 kilobytes on the System Board (64 kilobytes on the older models),
and most readers will probably be anxious to do so. More RAM means more space for
programs and data. 3

In addition to the 256 kilobytes that can be resident on the System Board, extra
RAM on auxiliary cards can be plugged into any of the System Board’s five slots.
IBM selis memory expansion boards, and quite elaborate boards with capacities of up
to 512 kilobytes are available from manufacturers specializing in accessories for the
PC.
All RAM memory in the Personal Computer is parity-checked to guard against
errors. A single parity-check bit is stored along with each byte of data; thus, each
memory location is 9 bits wide. Odd parity is used, which means that the parity bit is
set to 1 if there are an even number of 1’s in the data byte, and to 0 if the number of 1’s
is odd. When a byte is later recalled from storage, the total number of 1’s in the data
and parity bits is checked. If the number is odd, the data byte is assumed to be valid.
But, if the total number of 1’s turns out to be even, an error is flagged and the system
shuts down, displaying a ‘‘PARITY ERROR’’ message on the video screen.

Parity errors are the result of defective memory chips, which must be located and
replaced (usually by a service technician). Note that parity checking will not detect an
error if two bits of a byte are defective, since reversing the status of two bits restores
the original parity. However, double-bit errors have such a low probability of
occurrence that they can be ignored.

We turn now to ROM, the second form of semiconductor memory. Like RAM,
ROM is designed for random access. However, the data in ROM are stored there
permanently at the time of the ROM’s manufacture, and though this stored informa-
tion can later be retrieved at will, it can never be altered. Furthermore, ROM storage
is non-volatile; pulling the plug leaves ROM data intact.

Non-volatile read-only memory is useful as a means of storing programs essential
to the operation of a computer system. The IBM Personal Computer comes with 40
kilobytes of ROM containing the BASIC language and a small portion of the
computer’s operating system. Both high-level languages and operating systems are
important examples of system software, programs that give a computer its ‘ ‘personal-
ity.”” Without system software in its memory, a computer simply sits there, unrespon-
sive and useless to its owner. We shall have occasion to say considerably more about
system software later in this chapter.

While RAM allows data to be both written (stored) and read (retrieved), ROM
allows only reading. RAM storage is volatile, so data vanish when system power is
removed. In contrast, ROM storage is non-volatile and permanent.

GETTING ACQUAINTED WITH THE SYSTEM 9

THE BUS

As illustrated in Fig. 1-4, ROM and RAM are connected with the PC’s central
processing unit through a bus, or set of parallel electrical conductors. On some
computers, the bus is a separate physical entity, a circuit board into which the other
modules of the system are plugged. The Personal Computer, in contrast, was
conceived as an integrated single-board design, so the bus together with many of the
imbortant modules of the system are co-resident on one large printed circuit board,
the so-called System Board. The lines of the bus are routed to five 62-pin sockets on
the System Board and are thus available to any auxiliary adapters that are plugged in.

TYPICAL

CONNECTIONS

TO BUS

VTN

1 DATA BUS 08

? 8 LINES

D7

Fig. 1-5. The bus of the Personal
ADDRESS BUS A0 Computer consists of three
sub-buses that convey data,
address, and control signals.
)20 LINES Although the 8088 is a 16-bit
microprocessor, it works with
byte-size data words — hence, the
8-line data bus.

Al9

CONTROL BUS

25 LINES

Figure 1-5 reveals that the bus is in fact composed of three separate subbuses: the
data bus, the address bus, and the control bus. Data flowing into or out of memory
does so by way of the data bus, which comprises eight lines, DO-D7. From this we
can surmise (correctly) that memory in the PC is organized to accommodate byte-size
data words.

The address bus is used by the CPU to select which location inmemory will be read
from or written to. Note that the address bus comprises 20 lines (A0-A19), which
means that a maximum of one megabyte of memory can be addressed by the CPU.
(We arrive at this figure by raising 2 to the 20-th power, which yields 1,048,576, or
one megabyte. The same logic that causes 1,024 to be called a kilobyte prevails here.)
Most PC owners will be content with far less than a megabyte of main memory,
64-256 kilobytes being more typical.

The remaining 25 lines of the bus are referred to collectively as the control bus. It is

ugh these lines that the CPU exerts its control over the other elements of the
z'?tem. For example, one line controls writing to memory, another reading from
memory, a third writing to I/O ports, and a fourth reading from I/O ports. (As used

10 GUIDE TO THE IBM PERSONAL COMPUTER

here, an I/O (input/output) port is an abstraction that refers to an addressable location
which, when read from or written to, allows the CPU to communicate with devices
external to the computer. More on this in a subsequent chapter.) Also comprised in
the control bus are clock lines, which carry timing signals used by the entire system,
and various lines that allow feedback to the CPU from other modules.

All three subbuses work in concert. For example, when the CPU wishes to store
data in memory, it puts data on the data bus, puts the desired address on the address
bus, and sends one line of the control bus LOW to cause the data to be stored at the
designated location in RAM. Similarly, during a memory-read operation the CPU
puts an address on the address bus, and then sends the proper line of the control bus
LOW, causing the designated location in RAM (or RGM) to dump its contents onto
the data bus.

Each line of the bus can be driven by only one device at a time, but any number of
devices can be “‘listening.’” The bus Constitutes the main thoroughfare over which
data traffic is routed between the various modules of a computer system.

THE CENTRAL PROCESSING UNIT

The module that controls and coordinates virtually everything within a computer is
the central processing unit, or CPU. It is in the CPU that the actual business of
computing is performed. Taking its cue from instruction codes, which it alternately
fetches from memory and executes, the CPU does all the computation and decision
making specified by a program,. It may then store the results of its operations in
memory or send them elsewhere within (or outside of) the computer. As noted earlier,
all communication between the CPU and the various other elements of the system
takes place via the bus.

Like virtually all microcomputers, the IBM PC has a CPU that is implemented
almost entirely on a single integrated circuit known as a microprocessor. In building
the Personal Computer, IBM engineers chose the 16-bit Intel 8088 microprocessor,
which operates internally on 16-bit words but shuttles data back and forth over the bus
in byte-size chunks. This may seem strangely inefficient, in comparison with 16-bit
data transfers, and indeed it is. Compared to the 8086, which is identical to the 8088
in all respects except that it uses a full 16-bit-wide data bus, the 8088 is only about
half as fast. Compared to an 8-bit microprocessor like the 8080, however, the 8088 is
of course significantly faster.

In spite of the speed penalty it exacts, restricting the width of the 8088’s data path
to 8 bits does have certain advantages. For one, it allowed the PC to be developed
using cheap and readily available 8-bit support circuits. These perform assorted
useful functions like establishing an interface between the microprocessor and its data
bus, or between the data bus and a device external to the CPU.

An even more compelling advantage is rooted in the relationship between the 8088
and its venerable 8-bit ancestor, the 8080. The assembly language instruction set of
the 8088 is a superset of that used in the 8080. In other words, the 8088 can execute
programs written for the 8080 if the assembly-languageinstructions(scurce code)are

GETTING ACQUAINTED WITH THE SYSTEM 1

re-assembled for the 8088. What this means is that after suitable translation, much of
the vast array of software written, tested and debugged on the 8080 can now be run on
the 8088. Do not assume, though, that any program that will run on an 8080-based
computer will work on the PC. It must have been re-assembled for the 8088.

This, however, explains why only a year or so after the PC’s introduction we see
such a wide variety of familiar software (MicroPro’s ‘“WordStar,’’ Ashton-Tate’s
‘“dBase I1,”’ etc.) being offered for the PC. Of course, a lot of brand new programs
have been and will be written for the Personal Computer, but the quick availability of
an established program base was certainly an important factor in IBM’s decision to
use the 8088.

The 16-bit 8088 is an improvement over the older 8-bit 8080 in several areas.
Probably the most obvious difference between the two is that the 8088 can address a
full megabyte of memory, while the 8080 was limited o just 64 kilobytes. (Only a
few years ago, 64 kilobytes seemed like more than enough. How times change!) In
addition, the 8088 boasts of improved error checking and higher speed. The latter is
made possibie in part by on-chip hardware for multiplication and division, two
procedures that ordinarily are quite sluggish when implemented strictly in software.

The 8088 i< capable of addressing a huge number of I/O ports — 65,536 to be exact
— although only 512 of these are available for use in the PC. I/O devices and memory
share the same address and data buses, but are activated by separate control lines. We
shall have nccasion shortly to discuss two important I/O devices, the parallel printer
port and the asynchronous communications adapter.

THE 8087 CO-PROCESSOR

The computational power of the 8088 microprocessor can be extended by the addition
of an optional 8087 Numeric Data Processor, which plugs into a vacant socket
reserved for it on the Systern Board. Once in place, the 8087 functions as a
co-processor that shares the same instruction stream as the 8088. Each processor
responds only to the commands appropriate to it, and ignores all the rest. In effect,
then, the 8087 and 8088 work in tandem, each one performing the tasks for which it is
best suited.

Basically, the 8087 is a high-powered number cruncher capable of increasing the
speed of floating-point numerical computaiion by a factor of as much as 100. Inside
its ceramic case, the 8087 contains the hardware necessary for the multiplication,
division, addition, and subtraction of 80-bit floating-point numbers. Also contained
are assorted look-up tables for the standard logarithmic and trigonometric functions.
Because all routines are implemented in hardware, extremely large numbers can be
processed in a fraction of the time required by a 16-bit 8088 working alone.

Speed is not the 8087’s only virtue. Its 80-bit internal data format allows numbers
to be represented with extremely high precision. This can be especially important
during a lengthy series of calculations, since numerical precision is degraded every
step of the way because of the conversion from the decimal to the binary system. To
end up with a reliable answer, it is necessary to carry out the intermediate steps of a

