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Preface

The book is aimed at the analysis of contemporary problems in combustion science,
namely flame propagation, detonation, and heterophaseous combustion based on
the works of the author; from a certain viewpoint, it is an auto survey. In this book,
some modern problems in the area of gas combustion, as well as methods allowing
to calculate and estimate limiting conditions of ignition, and flame propagation on
the basis of experimental results obtained substantially by the author of the book are
considered. The book may be useful for experienced students and qualified sci-
entists in the area of experimental studies of combustion processes.

An approximate analytical approach for estimation of the effectiveness of the
influence of inhibitor additives on flame velocity and flame propagation limits was
suggested for combustion of rich H, + air mixtures. The method is based on the
model of a narrow reaction zone and takes into account peculiarities of the branched
chain mechanism of H, oxidation. It is shown that the occurrence of flame prop-
agation limits depending on the amount of inhibitor is caused by a positive feed-
back between flame velocity and the amount of active centers of combustion, being
terminated via an inhibitor. According to the feedback, the influence of an inhibitor
leads to lowering of combustion temperature and flame velocity as well. The
method is proposed for the analysis of experimental data on the limits of flame
propagation in hydrogen—air mixtures at atmospheric pressure in the presence of
small quantities of active additives (inhibitors). The mechanism of the occurrence of
an upper concentration limit of flame propagation at atmospheric pressure taking
into account effective heat losses in the termolecular recombination H + O, + M —
HO, + M is suggested for combustion of an H, + air mixture.

Regularities of formation of spherical flames in stoichiometric mixtures of nat-
ural gas and isobutylene (iso-C4Hg) with oxygen and Kr or CO, additives in the
constant volume reactor were established by means of color speed cinematography
at 100 Torr and 298 K. The influence of additives of CO,, Ar, propene, and CCl4 on
initial stages and dynamics of flame front formation and the structure of laminar
spherical flames in hydrogen—air, methane-air, and n-pentane—air mixtures were
studied in a bomb of constant volume by means of color high-speed digital
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cinematography at atmospheric pressure. Numerical investigation into specific
surface effects in flame propagation of lean and rich laminar hydrogen flames at
different wall boundary conditions and fuel/air ratios was performed by means of
two-dimensional simulations. It was experimentally shown that the same lean (H; <
10 %) hydrogen—air mixture can be repeatedly ignited. Numerical simulation based
on Boussinesq approximation was shown to be in qualitative agreement with the
observed features of combustion. Features of spatial development of thermal
ignition (so-called self-ignition or spontaneous ignition) in chain oxidation of
hydrogen, natural gas, and isobutene with oxygen in the pressure range of 10-100
Torr and 750-1000 K have been revealed by means of high-speed color cine-
matography. It was shown that the features could be controlled by addition of
chemical active gaseous additives (promoters and inhibitors). It is shown that the
features of spatial development of spontaneous ignition of propane—air and
n-pentane—air mixtures depend on the state of reactor surface, namely an ignition
initial center originates on the reactor surface, then the flame front of the center
propagates into volume with the normal velocity corresponding to the reactor walls
temperature and gas mixture composition. The ignition of n-pentane—air mixture at
low temperatures was experimentally studied in a rapid mixture injection static
reactor. The ignition process was monitored using a high-speed color video camera.
It is shown that introduction of platinum wire into the reactor eliminates the phe-
nomenon of a negative temperature coefficient; however, Pt wire has no effect on
the ignition delay time of thermal ignition of stoichiometric n-pentane—air mixture
at lower temperatures. Spatial development of chain ignition in hydrogen—air
mixtures in the vicinity of the third combustion pressure limit has been investigated
by means of quick gas transfer with the use of high-speed color cinematography. It
was shown that spatial development of ignition is determined by material and state
of the reactor surface; a primary ignition center always occurs at reactor surface.

The approximate analytical method was applied for analysis of the problem on a
local chain-thermal explosion in reaction of hydrogen oxidation in the presence of
chemically active additive. It is shown that key parameters defining the critical size
of a local source of ignition are the temperature in the center of local ignition zone;
the quantity of the active centers of combustion created with the local source; and
presence of active chemical additives in combustible gas mixture. Comparison to
experimental data has shown applicability of the developed approach for the
analysis of critical conditions of local ignition in combustible gas mixtures. It is
experimentally revealed that the methane combustion inhibitor CCly shows no
effect on the lower ignition limit of hydrogen combustion. It is established that
small amounts (~ 10" %) of chromium hex carbonyl promote combustion of 2H,
+ O, mixture, which manifests itself in the increase in the propagation velocity
of the flame, thus inhibition of oxidation of isobutene by this additive takes place.
Therefore, the role of hydrogen atoms in hydrocarbon oxidation is not significant
and may result at least in participating in longer reaction chains than in hydrogen
oxidation. This means that the kinetic mechanism of inhibiting combustion of
hydrocarbons by carbonyls suggested in the literature based on accounting for
termination of hydrogen atoms should be refined.
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By means of high-speed color cinematography, it was shown that the flames in
lean H,—air mixtures at an initial stage propagate symmetrically and the flame
radius can be estimated from the frames of speed filming. It is shown that suffi-
ciently strict calculation of cellular structure of the flame front of lean hydrogen
mixes requires consideration of a 3D problem, however, thermal diffusion insta-
bilities at the initial stage of combustion have no effect on the velocity of flame
which can be estimated assuming unperturbed flame front in the range of 8
% < Hy < 15 %. It was shown that the analysis of experimental data on flame
propagation in lean mixtures does not allow taking apart the results of calculation
by two-dimensional model with regard to convection and without convection. It
was experimentally shown that isobutene additives in quantities below a concen-
tration limit (up to 1.5 %) tend to increase, and CO, additives up to 15 %—to
reduce the flame propagation velocity in lean H,—air mixtures. The reasons for the
acceleration of combustion in the presence of hydrocarbon additive are considered.
The method of high-speed cinematography was used in investigation of transition
of spherical flame front to flat front in n-pentane—air and methane—air mixtures
initiated by a spark discharge. Cellular flame structures were observed in the
transition. Modeling based on compressible reactive Navier—Stokes equations at
low Mach number showed qualitative agreement with experiment. Features of
combustion in flame cells caused by hydrodynamic instability are experimentally
established. It was shown that each flame cell represents a separate “chemical
reactor”; in the cell, the process of complete chemical transformation occurs. It was
shown that inhomogeneities detected in light emission that arise after contact of a
flame front with the walls of cylindrical reactor can be correlated with the occur-
rence of acoustic waves by the example of combustion of hydrogen—air mixtures
containing 30 and 15 % of hydrogen. It was revealed that flame velocities in
stoichiometric hydrogen—air mixtures at central spark initiation do not depend on
the material of inner reactor surface but on its shape.

It was shown that spark initiated flames of hydrogen—air mixtures (8-15 % H;)
pass through the close-meshed aluminum spherical obstacles of cell size 0.04-0.1
mm?; the flame of 15 % H, in the air after obstacle is accelerated; acoustic gas
fluctuations occur in the reactor. The flame of 8 % natural gas—air mixture is not
accelerated after obstacle; acoustic fluctuations are missing. It was shown that
active centers of methane and hydrogen combustion, determining flame propaga-
tion, have different chemical nature. It was shown that spark initiated flames of
diluted stoichiometric natural gas—oxygen mixtures in close-meshed aluminum
spheres of mesh size 0.1-0.2 mm” do not propagate through the spheres, but always
propagate through planar meshed obstacles of the same mesh size. It was found that
the features of flame propagation at simultaneous initiation at opposite butt-ends
of the cylindrical reactor differ markedly from those at initiation from a single
discharge. It is shown that the increase in warming up in hydrocabons combustion
at simultaneous initiation at opposite butt-ends of a cylindrical reactor by a factor of
~ 2 as compared to flame propagation from a single initiation source is due to a
two-stage nature of the combustion process. It was shown that ignition of diluted
methane—oxygen mix (total pressure up to 200 Torr) after a single obstacle can be
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observed markedly far from an obstacle surface. The use of the meshed sphere as an
obstacle leads to increase in the distance of flame emergence behind an obstacle in
comparison with a round opening; two or more close-meshed obstacles strongly
suppress flame propagation. It is experimentally shown that under the same con-
ditions the limit of penetration of diluted methane oxygen flame through a confuser
is markedly less than in the case of a plain orifice and is even less than in the case of
a diffuser. Therefore, the diffuser is the most effective flame arrester.

It is illustrated that one-dimensional Zeldovich-von Neumann-Doering model
of detonation wave gives a satisfactory approach for the description of a stationary
detonation wave (DW), despite a large number of the approximations made at the
derivation of the equations of the theory. Besides, according to modern literary data
on numerical modeling, the neglect of transverse structure of detonation wave in
one-dimensional model has no influence on the pressure value in the front of DW in
comparison with multidimensional models. It is experimentally demonstrated that
the acoustic resonator (Helmholtz’s resonator) connected to a cylindrical reactor can
cause reactor destruction at spark initiation of deflagration in lean (15 %) hydrogen
mixture with oxygen. This points to a possibility of transition of deflagration to
supersonic regime mode near the lower concentration limit of detonation even for
small reactor where detonation is obviously impossible. On the basis of Zeldovich—
von Neumann-Doering detonation theory with allowance for the theory of chain
processes by the example of the oxidation of hydrogen-rich mixtures in the pres-
ence of chemically active additive (inhibitor), it is shown that taking into account
reactions of inhibitor with chain carrier leads to “chemical” losses in addition to
heat losses.

A heterophaseous branching-chain reaction of dichlorosilane oxidation is con-
sidered in terms of unsteady nucleation theory taking into account the condensation
growth of nuclei. The transition between the homogeneous and heterogeneous
phase formation; the dependence of the amount of aerosol on the initial tempera-
ture, pressure, and mixture concentration; both the kinetics of phase formation and
of the disappearance of initial substance are qualitatively described. It is shown that
small inhibitor (propene) additives reduce the mean size of aerosol particles. This
result is also in qualitative agreement with experimental data. It is found that the
amount of aerosol formed decreases with increasing initial temperature because
of the increase in equilibrium vapor pressure of the new phase. The reactivity of the
silicon dioxide aerosol obtained in the presence of Freon-12 is shown to vary
reversibly. The role of surface diffusion and surface nucleation in the deposition of
thin films is discussed. We have experimentally observed both the stable liquid and
solid Coulomb crystals formed in the discharge-initiated combustion reaction
between dichlorosilane and oxygen and the growth dynamics of formation of a
rotating solid Coulomb crystal at the interface between the void and dusty cloud. It
was shown that the gases evolving during thermal annealing of coal powder have an
inhibiting effect on the ignition and combustion of hybrid gas suspension, con-
taining natural gas. Investigation into flammability in oxygen of various types of
coal with various content of volatiles at a total pressure of 85 Torr and initial
temperatures in the range of 650-750 °C has been performed. It is shown that
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ignition of separate particles of coal powder occurs right after injection of powder
with oxygen without gas combustion. Then after an ignition delay the volatiles
containing in a coal powder ignite, thus the ignition propagates over reactor vol-
ume. The more volatiles the coal powder contains the more intensive ignition is
observed. It is shown that hybrid powder gas mixture PGM consisting of soot or
graphite powders which do not contain volatiles, and a stoichiometric mixture of
natural gas and oxygen, intensively ignite in conditions in which hybrid PGM,
consisting of coal powder, and a stoichiometric mixture of natural gas and oxygen,
does not ignite. It is shown that unlike graphite, soot powder promotes ignition of a
stoichiometric mixture of natural gas and oxygen. Possible scenarios of ignitions
occurrence in mines were analyzed. It is shown that hybrid PGM, consisting of soot
powder and the stoichiometric mixture of natural gas and oxygen, intensively
ignites in the absence of C;oF,g, however, in the presence of C;yF;g combustion of
natural gas is missing, the ignition of separate particles of soot powder is only
observed.
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Introduction

There are three things you can watch forever: flame, water, and other people
working. In this book, I will speak about different regimes of flame propagation and
I will try to tell about the main factors influencing the flames. A tremendous variety
of the modes of combustion registered by means of color high-speed filming pre-
sented in the book seems very surprising even for the specialist.

A flame does not arise spontaneously. We use a lighter to turn on the gas stove,
or a match to kindle a fire. Many years ago, our ancestors used flint, or a lightning,
irrespective of the person, lit combustible subjects. Anyway, without an ignition
source a process of combustion will not occur. It concerns also an internal com-
bustion engine and a fighting shell, and any devices using combustion. These are
mines for coal mining and other minerals, pipelines and gas highways, and pre-
mises. So broad application and value of combustion in our life demands knowl-
edge of the regularities of this phenomenon; the ignition on which it first depends
whether combustion occurs or not. If ignition happens, flame propagation in gas
mixture takes place. In certain conditions, the flame can be accelerated and there
will be detonation—the complex consisting of the shock wave fed by the energy,
which is given by the combustion process, and a combustion zone, which extends
with supersonic speed. It is obvious that such processes leading to destruction of
industrial objects, premises, and death of people have to be excluded. Emergence of
combustion has to be controlled strictly; there must be reliable methods of pre-
vention of combustion.

Methods of suppression of combustion can be divided as chemical ones with use
of active additives that terminate reaction chains (it is well known that all gas
combustion processes have branched chain nature), and physical ones (fire pre-
vention devices). The ways of suppression by means of foamy and aerosol struc-
tures are intermediate, as the substances entered into a flame zone are usually
chemically active. The active additives suppressing combustion (inhibitors) despite
the seeming simplicity of their use, for example, mixing with combustible gas in
advance, possess many shortcomings: inhibitors of hydrogen combustion, such as
unsaturated hydrocarbons, are flammable and besides these are effective only in
stoichiometric and rich mixes. As is shown below, in lean mixes these inhibitors, on
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the contrary, accelerate burning. Carbonyls of metals are poisonous and cannot be
used in the presence of human personnel. Safe (having high occupational exposure
limit, OEL) freons are less effective, and, besides, at emergency ignition lead to the
formation of very toxic HF and COF,. Physical methods as barriers and grids can
also serve along with overwhelming action as turbulizers of combustion and in
certain conditions lead to acceleration of the front of combustion with undesirable
consequences.

On the other hand, in many combustion devices, ensuring completeness of
combustion (diesel engines) or combustion acceleration (the detonation engine) is
required. It is achieved with the use of nozzles, turbulizers, and other obstacles
providing flame acceleration. It is known that the majority of reactions of gaseous
combustion is followed by formation of a solid disperse phase. Thus, the solid
phase can arise directly in the course of combustion, or at oxidation of an active
additive, and can also be present in advance in the gaseous mixture in the form of a
disperse phase (for example, when using aerosol fire extinguishers). Industrially
important processes of oxidation of hydrocarbons (e.g., synthesis of nanotubes) and
silanes are combustion processes that are followed by the formation of a new phase.
Oxidation of silanes is followed by formation of silicon dioxide and finds appli-
cation in microelectronics as isolating coatings and as active elements in field-effect
transistors. It indicates the importance of research of combustion of heterophase
systems, gas—solid.

The problems listed above, which are reduced to providing complete control of
process of combustion of the set combustible substances in the set conditions are
those actual problems that researchers have been solving in combustion science up
to now.

It is impossible to overestimate a huge contribution of the Soviet school of
combustion to the problems considered in this book. We stand on the shoulders of
giants such as academicians Ya.B. Zeldovich, N.N. Semenov, A.G. Merzhanov,
Profs. D.A. Frank-Kamenetsky, O.M. Todes, A.S. Sokolik, etc. In their works, they
developed theories of thermal explosion, local ignition, focal ignition, and flame
propagation. These theories are written by “wide dabs” and leave still considerable
scope for specification of the physical description of many phenomena occurring in
the combustion of gaseous and solid systems.

Note that at a theory statement we tried to pay main attention not to numerical
calculations, but whenever possible to analytical consideration. It is also related to
the way that the development of an analytical approach is always followed by the
creation of some ideology of understanding of essence of the process using certain
reasonable assumptions, which allow getting the solution of a complex problem in a
rather simple and clear analytical form. Thus, the reader has an opportunity to
understand the nature of the phenomenon, without penetrating into a particular
architecture of algorithms of a calculation method.

The author would also like to make the reader more familiar with virtually
inaccessible works of Russian authors.
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