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PREFACE

Enzymes are nature’s catalysts and they are responsible for accelerating most
chemical reactions in biology. The high selectivity or specificity of these
catalysts, which operate under mild conditions of biological systems, makes
them very attractive for use in the laboratory or industry. But this is quite
challenging, because enzymes have evolved to function in the complex bio-
logical media at biological temperatures, and hence their stability/function
under nonbiological conditions of a common chemical laboratory such as
organic solvent media, extreme pHs, or high temperatures is often poor.
Most enzymes are also quite expensive when compared to many chemical
reagents, and hence special methods are required to render enzymes usable
in the context of a chemical laboratory or for industry. This volume
addresses these two important issues related to enzymes in much detail,
and builds on the important contributions made to this topic from previous
volumes of this series.’

Recent developments in nanochemistry are brought to bear on the
above two problems of enzyme stability/function in the current volume.
From a fundamental chemical point of view, enzyme stability is a thermo-
dynamic issue, while kinetic stability is also important. Enzymes ar¢ thermo-
dynamically stable at room temperature but the denaturation free energy
(A G) decreases with increase in temperature. It reaches a numerical value
of zero at the denaturation temperature, and at this temperature, the native
and denatured states of the enzyme are in equilibrium with equal concen-
trations. Above this temperature, the denatured state is thermodynamically
preferred over the native state. Similarly, the pH and solvent dielectric can
also influence A G and render enzymes unstable. To combat this important
issue, significant progress has been made in improving enzyme stability by
reducing the conformational entropy of enzymes by encasing them in
nanomaterials with a variety of architectures described in this volume.
One important point is that entropy of denaturation (AS) is positive and
any reduction in A S raises A G and hence contributes to the enhanced sta-
bility of the enzyme. Many methods are developed to take advantage of this
thermodynamic principle, directly or indirectly to lower the conformational
entropy of the denatured state, and nanochemistry methods have become

! Methods in Enzymology Volumes 137, 136, 135, 64, and 44.
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handy for this approach. Our understanding of these issues, therefore, is
rooted in fundamentals so that the tree of knowledge can grow and prosper.
This is what the authors of the chapters in this volume have striven to do.

Nanomaterials have several unique properties, such as high surface area
for unit mass, rich surface chemistry arising from surface atoms which differ
significantly from those of the interior atoms, and these materials also have
versatile optical, thermal, and magnetic properties. When these interesting
properties of nanomaterials are coupled with the versatile catalytic abilities of
enzymes, one can generate novel biocatalytic nanomaterials. Many examples
are documented in this volume. Very high loadings of the enzymes on the
nanoparticle are often achieved due to their large surface-to-mass ratio. Due
to the nanosize of the support materials, diffusion of the substrate to the
active site of the bound enzyme is also facilitated.

One major difficulty in using nanomaterials for enzyme binding and
recycling, however, is that the separation of the nanoparticle bound enzyme
from the reaction media is often difficult due to the dispersion of the particles
in the solvent. This important issue has been addressed by using several dif-
ferent methods in this volume, and one of them is the use of magnetic
nanoparticles, and the other has been using innovative design architectures
where the nanoparticles themselves are embedded in porous microparticles
that could be readily separated from the reaction media and recycled (Fig. 1).
Easy separation, reaction workup, and recycling of the biocatalyst could
reduce the process cost and hence very important for industrial applications.
This kind of hierarchical structure design from the nanoscale to macroscale
with attention to the molecular details of the support matrix and its porous
nature is critical for rapid progress in this area. This was the subject matter of
several distinguished chapters in this volume.

The use of two-dimensional materials (nanosheets) for enzyme binding
is another major breakthrough in the field. Because of their nm-thinness
and large lateral size of several microns, nanosheets have very large
surface-area-to-mass ratios and large ratio of length to thickness (aspect
ratio) greater than their nanoparticle cousins. Therefore, large amounts of
enzymes can be bound per gram of these nanosheets, and due to this unique
aspect ratio, the bound enzymes are well exposed to the solvent for rapid
reactions, overcoming the diffusional issues related to enzymes bound on
nanoparticle surfaces. Furthermore, these nanosheets can be restacked
with enzymes entrapped between the plates, and the nanogalleries formed
by restacking provide protection against proteases, bacteria, and viruses,
which can potentially degrade the biocatalyst. When properly designed,



Preface XV

S = Enzymes . ,
i @nano/micro ;
Enzyme-TiO; | capsules Magnetic particle-
nanosheet | polymer—enzyme
intercalates — conjugate
Quantum dot— — - Nanoparticle-enzyme-
polymer—enzyme = microparticie
conjugate <~ & B conjugate
Chitosan—
Enzyme-nanoparticle— .
cellulose paper T —— - nanoparticle—enzyme
conjugate conjugate
R L) 1
|
Enzyme-Zr(HPO. |
yrrn';nosh(eet i | Enzyme-dextran—PEG |

Intercalates [ } conjugate |

| Graphene—enzyme I
conjugate —

Figure 1 The variety of nanoarchitectures and methods used in the design of enzyme—
nanomaterial hybrids for advanced enzymology applications.

enzyme/nanosheet biocatalysts also enhance thermal stabilities of bound
enzymes due to a significant reduction in the conformational entropy of
the bound enzyme. This latter hypothesis of confinement and reduced
entropy of enzymes embedded between nanosheets (two-dimensional
space) is now being tested by a number of different research groups around
the world.

A number of two-dimensional materials are also being explored for
enzyme binding, including the state-of-the-art materials such as graphene,
which could be beneficial for enzyme binding due to its unique properties.
For example, charge-conducting nanosheets might be able to promote
redox activities of enzymes by wiring the charge-donor and charge-acceptor
sites, via the layered material. This hypothesis remains to be tested, and
facile access to two-dimensional materials reported in this volume might
accelerate such exciting studies.

Cellulosic paper continues to attract attention for enzyme binding and
sensing applications due to its versatile features as well as low cost. Paper



XVi Preface

might be the medium of the future for enzyme binding where the nanofibers
of cellulose could be exploited for functionalization as well as physical inter-
locking of enzymes in the nanofibers. Paper-based sensors, as reported here
and elsewhere, are very exciting for the design of light weight, inexpensive,
porous, high-capacity bioreactors or enzyme cartridges for small- or large-
scale synthesis applications. One other area that could benefit from these
types of developments could be synthetic organic chemistry where a mul-
tistep synthesis can be carried out by a number of different enzymes embed-
ded in the layers of a paper matrix. Such futuristic goals are not far away, and
numerous examples of paper-embedded enzymes are already known and it is
only a matter of systematic studies that would one day produce reaction car-
tridges for multistep synthesis of high value or tedious chemical reactions.

Industrial exploitation of nature’s biocatalysts is still rudimentary, when
one compares the current status of the field with the potential number of
enzymes that have not yet been examined for attachment to nanosurfaces.
From nanoparticles to nanomicrocomposites to two-dimensional materials
to fibrous networks (paper), there appears to be limitless opportunities to
exploit and control the behavior of enzymes under nonbiological condi-
tions. Enzymes can influence the production of molecules, materials, and
devices, and they are at the service of the mankind on a global scale.
Therefore, they have the potential to make progress in addressing social,
economical, environmental, and political issues of the current-day society.
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