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Notation

Roman letters:
a
A

JO0 0,

In

k. ki, k>

Kk L[ K]
L

M, M,

M. m ].[ M]
P(t).P.{P)

P

q-4u-quv- qu

radius, plate width

cross-sectional area

thickness, depth, plate length, body force
longitudinal wave speed, VE/p

primary = /E*/p, secondary = /G/p, and Rayleigh

wave speeds

damping, damping matrix

plate fexural rigidity, Er/12(1 —v?)

unit vectors

Young's modulus, £* = E/(1 — v2), E = E*h
beam flexural stiffness

Lagrangian large-strain tensor

member axial force. element nodal force
generalized nodal force

element shape functions

shear modulus, frequency-response function
beam or rod height, plate thickness
interpolation functions

complex /=1, counter

second moment of area, / = bh?/12 for rectangle
Jacobian

Bessel functions of the first kind
wavenumbers

stiffness, stiftness matrices

length

moment

mass, mass matrices

applied-force history

generalized applied load

distributed load

Xi



xii Notation

rR radial coordinate, radius

ros.t isoparametric coordinates

[ R | rotation matrix

£ time, traction vector

T time window, period, temperature
T kinetic energy

[ 71 transformation matrix

u(r) response; velocity, strain, etc.

i, v, w displacements

U strain energy

v member shear force, volume

)% potential of conservative loads
w beam width, Wronskein

w work

x?, 2, z¢ original rectilinear coordinates
X, V.2 deformed rectilincar coordinates

o coefficient of thermal expansion

] small quantity, variation

dij Kronecker delta

A determinant, increment

€. €jj small quantity, strain

n viscosity, damping, principal coordinate
6 angular coordinate

A eigenvalue

i shear modulus, complex frequency

v Poisson’s ratio

I total potential energy

pp mass density

0. 0jj stress

¢ phase

Py, Py, Pz rotation

[} @ | modal vector, matrix

) angular frequency

Wy, Wy natural frequency, damped natural frequency
& damping ratio

Special symbols:

V2 differential operator, (32/9x%) + (8%/9y?)
[ ] square matrix, rectangular array

{ } vector, spectral amplitude

[ diagonal matrix

(bar) local coordinates



Subscripts:
E.G.T
i.j.k

)

Superscripts:
[

*

/

Abbreviations:
BC. PBC
DoF, SDoF
DKT

EoM

EVP

FE

FFT

FRF

IC

MRT

ODE

Notation xiii

(hat) vector, complex quantity
(dot) time derivative

elastic. geometric, tangent (total) stiffness matrix
continuun tensor components
(comma) partial differentiation

original configuration
complex conjugate
prime, derivative with respect to argument

boundary condition, periodic BC

degree of freedom, single DoF

discrete Kirchhoff triangular FE element
equation of motion

eigenvalue problem

finite clement

fast Fourier transform
frequency-response function

initial condition

membrane with rotation triangular FE element
ordinary differential equation

Primary Examples of Notation Use

Discrete Systems:

f=1,2 N

where U is strain energy. u; is generalized DoF, Py is generalized force, N is total
number of DoF. and / is the enumeration of DoF.

Continuum Systems:

du;

€i=— L p=1,2.3
i dx¢ J

where ¢; is strain tensor. u; is Cartesian strain component, x{ is Cartesian position
component, and i, is Cartesian tensor component.

Atomic Systems:

2 = w=1,2,..., N,

aV

i T
ou i

where P is Cartesian force component. V is load potential, u; is Cartesian
displacement, i is Cartesian tensor component, N is total number of atoms, and
« is the enumeration of atoms.



Xiv Notation

Atomic EoM: N

25
LT 5 s =S it =
M P P Fi= ix,e,_vector
A

where M® is mass, 7 is position vector, P* is force vector on atom a due to atom g,
and N is the total number of atoms.
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Introduction

Those who have meditated on the beauty and utility of the general method of
Lagrange — who have felt the power and dignity of that central dynamical theorem
which he deduced from a combination of the principle of virtual velocities with the
principle of D*Alembert — and who have appreciated the simplicity and harmony
which he introduced by the idea of the variation of parameters, must [eel the
unfolding of a central idea.

W. R. Hamilton [41]

Structures are to be found in various shapes and sizes for various purposes and
uses, These range from the human-made structures of bridges carrying traffic,
buildings housing offices, and airplanes carrying passengers all the way down to
the biologic structures of cells and proteins carrying genetic information. Structural
mechanics is concerned with the behavior of structures under the action of applied
loads — their deformations and internal loads. We present, in the following chapters,
versatile methods to tackle some of the most common (and most difficult) problems
facing engineers in the analysis of structures. This volume specifically considers the
situations where the loads vary in time such that inertia effects are important in
computing the responses.

The modeling of the dynamic response of structures introduces many additional
considerations not anticipated from a static analysis. It is therefore worth our
while to say just a little about structural dynamics and its place in structural
analyses. The subject of rigid-body dynamics treats physical objects as bodies that
undergo motion without any change of shape. This has many applications: the
movement of machine parts, the flight of an aircraft or space vehicle, the motion
of the Earth and the planets. In many instances, however, the primary concern is
dynamic response involving changes of shape. This is particularly so in the design of
structures as encountered in automobiles, ships, aircraft, space vehicles, offshore
platforms. buildings. and bridges. Dynamic response involving deformations is
usually oscillatory in nature; the structure vibrates about a configuration of stable
equilibrium. For example, suppose that a building structure is in a state of static
equilibrium under the gravity loads acting on it; when subjected to wind loading, the
structure oscillates about this position of static equilibrium. An airplane provides
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an example of oscillatory motion about an equilibrium configuration that involves
rigid-body motion. When in flight, the whole system moves as a rigid body but is
also subjected to oscillatory motion due to engine and aerodynamic loads.

With the increasing use being made of lightweight, high-strength materials,
structures today are more susceptible than ever before to critical vibrations. Modern
buildings and bridges are lighter and more flexible and are made of materials
that provide much lower energy dissipation; all these contribute to more intense
vibration responses. Dynamic analysis of structures is therefore important for
modern structures and is likely to become even more so.

Structural Analysis and Models

The term model is widely used in many different contexts, but here we mecan a
representation of a physical system that may be used to predict the behavior of a
system in some desired respect. The actual physical system for which the predictions
are to be made is called the prototype.

There are two broad classes of models: physical models and mathematical
models. The physical model resembles the prototype in appearance but is usually
of a different size, may involve different materials, and frequently operates under
loads, temperatures, and so on that differ from those of the prototype. The use
of these models belongs to the category of “experimental methods of structural
analysis.” The mathematical model consists of one or more equations (and, more
likely nowadays, a numerical finite-element model) that describe the behavior of the
system of interest. The equations of the model are based on certain basic laws and
principles of mechanics and usually involve simplifying assumptions. These models
broadly belong to the category of “analytical methods of structural analysis™ (which
sounds a bit tautological). The equations themselves may or may not be solved on a
computer.

With the development of a valid model. it is possible to predict the immediate
and [uture behavior of the prototype under a set of specified inputs and to examine
a priori the effect of various possible design modifications.

We deal with models of different types in this book. Our primary model for
“solving the problem™ is finite-element (FE)-based and represents the structure in
terms of a finite number of discrete unknowns. This approach is chosen because it is
casily implemented on a computer and is scalable to large systems. It is also true that
current commercial FE codes are such that once the geometry, material properties,
and so on are correctly specified, then very high quality models are produced that
give high quality predictive capability, and this must inform how structural dynamics
should now be done.

Two practical finite elements are emphasized: the frame FE and the solid
FE. These represent extremes in a way: the frame FE embeds many structural
assumptions about behavior of slender members and consequently is very efficient
where applicable, and the solid FE has no structural assumptions and hence is
applicable to frames, shells, and solids alike. but it can be computationally expensive
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(o use. With these two element models available, almost any structural problem can
be solved in the sense that given the geometry, material properties, loads, and so on,
responses can be generated. This is where a different level of model enters, one that
helps to explain the computed numbers; these are of the “simple model™ type. That
is, when trying to understand a complex system, it is quite useful (and arguably
necessary) Lo have available these simple models — not as solutions per se but
as organizational principles for seeing through the voluminous numbers produced
by the FE codes. They identify the model parameters that play a significant role.
Sometimes they are constructed to go deeper into the mechanics of a problem;
for example. there are the plate and shell simple models that follow the structural
consequence of the thickness being thin, but there are also the modal, spectral, and
wave-propagation analysis models that give insight into how to view and understand
structural dynamics.

Goals and Outline of the Book

The primary goals of this book are

¢ To develop solution methods, general enough and scalable enough, to solve “big
dynamics problems™

e To develop methods of analysis to “make sense™ of the generated solutions

e Because geometric nonlinearities are an intimate aspect of flexible structures,
to make the solution and analysis methods general enough to seamlessly handle
nonlinear problems

The book is divided into two parts roughly corresponding to the first two objectives.
Part I develops the mechanics and computer models to handle general problems,
Part II develops the analytical models. The nonlinear analyses are distributed
throughout the chapters.

Chapter 1 introduces some foundational ideas in the dynamics of elastic
systems, ideas such as resonance and damping. Chapter 2 develops the mechanics
needed to handle large. complex systems: the key concept introduced is that
of virtual work. The formulation is in terms of discretized systems and is
general enough to be applicable to static/dynamic, linear/nonlinear, and conser-
vative/nonconservative systems alike. The only restriction is that the system be
discretized. Chapter 3 uses the Ritz method to convert continuous systems into
discrete form and then formalizes the process via the FE method. Chapter 4
is an attempt to classify the various types of dynamic problems based on the
space-time variation of their loadings; this sets the contexts for the computational
tools required and for the types of analysis procedures introduced. Chapter 5 ends
Part I with a review of some of the computer methods used to implement our
models. The essential algorithms discussed in detail are those for time integration
of simultaneous equations and [or solving eigenvalue problems.

Part II is the compilation of analytical models: modal analysis and eigenvalue
problems in Chapter 6. spectral analysis and strong formulations in Chapter 7,
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flexible plates and shells in Chapter 8, and wave propagation and high-frequency
analysis in Chapter 9. Chapter 10 ends Part II with an introduction to the concept
of the stability of the motion. This is fundamentally a nonlinear notion, and the
preceding chapters are developed general enough to anticipate this.

There are a good number of example problems distributed throughout the
chapters. A few are straightforward “finger exercises” in that they take a previously
established result and apply it to some problem. A few others do direct extensions
of some developed model or result. A very exciting new type of example problem
is made available because of Chapters 3 and 5 and is the predominant type of
example problem in Part II; here the computer programs are used to produce
results, but the analysis challenge is to “explain™ the results. This is akin to the
experimental challenge of collecting data on some partially unfamiliar or unknown
dynamic problem and then trying to explain the data. The objective of the example
problem is not so much to explain this or that result per se, but to show how the
programs can be interacted with to produce additional data to aid discovering the
explanation of the results. Remember that unlike the experimental analogue, the
FE solution can provide almost unlimited information about the solution presented
in almost unlimited different forms. Therefore, having control of the postprocessing
capabilities is an important aspect of the analysis.

In terms of philosophy, any FE program can be used for the underlying
computations, but to affirm the integral aspect of the computations and the
analyses, source code and executables are provided on the accompanying website:
www.cambridge.org/doyle structures. FEM. These codes and executables can be
used to re-create the data used in the majority of the examples as well as extend
them. The two major codes are SDframe/SDsolid; these are leaner versions of
the programs used in the QED package [28]. Also, as additional encouragement to
reproduce the results, all example problems are documented in terms of dimensions,
material properties, boundary conditions, and loadings, as well as mesh information.

As a final point, structural analysis computer programs generally do not
use a built-in system of units and do not utilize any dimensional conversion
constants. Therefore, any consistent system of units may be used for input, and the
corresponding calculated results are output in the same units. All the relevant data
for the example problems are presented in both SI units and common units. Because
both systems of units are used in this book, we generally prefer (when convenient)
to present the results in nondimensional form; however, for units that are common
to both systems (e.g., time, frequency, angle), they are left as is.
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Dynamics of Simple Elastic Systems

This chapter is concerned with the formulation of the equations of motion (EoM) of
simple systems. What is meant by simple is that the systems have just a single degree
of freedom (SDoF) and does not imply that the underlying mechanics is simple or
clementary in any way.

The concept of vibration is fundamental to understanding the dynamics of
clastic structures. The study of vibration is concerned with the oscillatory motion
of bodies; all bodies with clasticity and mass are capable of exhibiting vibrations.
Resonant (or natural) frequencies are the frequencies at which a structure
exhibits relatively large response amplitudes for relatively small inputs. Even if
the excitation forces are not sinusoidal, these {requencies tend to dominate the
response. In practice, large resonant responses are mitigated by the presence of
damping and nonlinear effects. Damping is considered in this chapter, wherecas
the effects of nonlinearities are distributed throughout the other chapters. The
use of Fourier analysis (or spectral analysis) as a means of describing time-varying
behavior is essential to the study of structural dynamics, and this too is developed
in this chapter.

1.1 Motion of Simple Systems

This section reviews the dynamics of elastic systems in the form of a spring-mass-
dashpot. We restrict the emphasis to concepts that are used directly in this and later
chapters. References 45,81, and 83 are good sources for additional details on the
material covered here.

Newton’s Laws for Moving Masses

Everyday experience of mass is as a weight, so much so that the words mass and
weight are often used interchangeably. In dynamics. these two words are associated
with quite distinct concepts — the first with inertia and the second with gravitation
attraction. We elaborate on the difference between the two.

Consider a particle as an object with negligible dimensions but definite mass M
and definite position in three-dimensional (3D) space 7 = xi + yj + zk. where 7, J,



