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Series Foreword

Advancing River Restoration
and Management

The field of river restoration and management has evolved
enormously in recent decades, driven largely by increased
recognition of the ecological values, river functions and ecosys-
tem services. Many conventional river management techniques,
emphasizing strong structural controls, have proven difficult to
maintain over time, resulting in sometimes spectacular failures,
and often a degraded river environment. More sustainable
results are likely from a holistic framework, which requires
viewing the ‘problem’ at a larger catchment scale and involves
the application of tools from diverse fields. Success often hinges
on understanding the sometimes complex interactions among
physical, ecological and social processes.

Thus, effective river restoration and management require
nurturing the interdisciplinary conversation, testing and refin-
ing of our scientific theories, reducing uncertainties, designing
future scenarios for evaluating the best options, and better

understanding the divide between nature and culture that
conditions human actions. It also implies that scientists should
communicate better with managers and practitioners, so that
new insights from research can guide management, and so that
results from implemented projects can, in turn, inform research
directions.

This series provides a forum for ‘integrative sciences to
improve rivers. It highlights innovative approaches, from the
underlying science, concepts, methodologies, new technolo-
gies and new practices, to help managers and scientists alike
improve our understanding of river processes, and to inform
our efforts to steward and restore our fluvial resources better
for a more harmonious coexistence of humans with their fluvial
environment.

G. Mathias Kondolf,
University of California, Berkeley

Hervé Piégay
University of Lyon, CNRS



Preface to the Second Edition

Since the publication of the first edition of Tools in Fluvial Geomorphology in 2003, the field has been in the course of a revolution
sparked by the development of new tools such as improved remote sensing data, acoustic Doppler profilers and radiometric dating
methods. The field has arguably entered a new era in knowledge production, the emergence of a second period of active quantifica-
tion, likely to have similarly profound impacts as the quantitative revolution of the 1960s. While traditional cross-section surveys
and bed material sampling still have their place, analysis of drone-based photogrammetry and GIS analysis of large data sets can
yield insights that allow the researcher to see the forest’ beyond the individual ‘trees’ knowable from field work at the reach scale.

Moreover, the role of fluvial geomorphology within society is changing, as geomorphologists are increasingly called upon to
provide input into ecological assessments, sustainable management and restoration schemes. Sometimes, geomorphology is applied
by non-geomorphologists, summarized to simple rules of thumbs, misused, and results misinterpreted. The discipline is fairly rich in
terms of techniques available and conceptual background. Practitioners can benefit from a broader array of tools if they understand
the full range of methods available and the context of their use in an integrative perspective.

By virtue of its position at the intersection of geography, geology, hydrology, river engineering and ecology, fluvial geomorphology
is an inherently interdisciplinary field. The tools used reflect this diversity of backgrounds, with techniques borrowed from these
different fields. This diversity is now compounded by the new tools available thanks to recent technological innovations, and by the
new demands placed on the field. Thus, the need to update Tools to provide a reference work for scientists in allied fields, managers
seeking guidance on what kind of geomorphic study is best suited to their needs and students seeking to make sense of the plethora
of approaches coexisting within fluvial geomorphology. Geomorphic studies based on this large set of knowledge, and placed within
an integrative and interdisciplinary perspective, are more likely to solve the often complex problems faced today.

Most of us are familiar and comfortable with a fairly narrow range of tools. Even if we are not ‘one-trick ponies’, if left to our
own devices, we are still likely to fall back on a small set of more familiar methods of study. The problem is summed up in the
popular expression, ‘If your only tool is a hammer, every problem looks like a nail’. To enlarge our toolboxes, it can be helpful to
have a reference that succinctly summarizes the techniques of specializations other than our own, to help understand the kinds of
problems to which different methods are best adapted, and the advantages and disadvantages of each. That is the goal of this book.
As we were frequently reminded by the late Reds Wolman, who contributed to the first edition and who provided much of the
inspiration for both editions, ‘Let the punishment fit the crime’. That is, use a tool that is well adapted to the specific problem. This
requires some understanding of the range of tools available to us, which this book attempts to convey.

We are indebted to our contributors, acknowledged experts in their specific fields, all of whom endeavoured to explain in plain
English the workings and pros and cons of various methods in their fields. We thank them for their thoughtful contributions and
hope that the book as a whole will encourage readers to expand horizons and integrate geomorphologists’ knowledge and know-how
in their practices.

Matt Kondolf
Hervé Piégay
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CHAPTER 1

Tools in fluvial geomorphology: problem statement

and recent practice

G. Mathias Kondolf' and Hervé Piégay?
!University of California, Berkeley, CA, USA
2Université de Lyon, UMR 5600 CNRS, Lyon, France

Let the punishment fit the crime.

Popular saying invoked by the late M.G. Wolman during
drafting of the first edition of Tools in Fluvial Geomorphology to capture the
idea that the tools should be selected based on the problem to be solved.

1.1 Introduction

As noted by Wolman (1995), in his essay Play: the handmaiden
of work, much geomorphological research is applied. The spatial
and temporal scales of geomorphic analysis can provide insights
for the management of risk from natural hazards, solving prob-
lems in river engineering (Giardino and Marston 1999) and
river ecology (Brookes and Shields 1996), with recent develop-
ments in river restoration in terms of assessment, design and
monitoring (Morandi et al. 2014). As do all scientists, fluvial
geomorphologists employ tools in their research, but the range
of tools is probably broader in this field than others because of its
position at the intersection of geology, geography and river engi-
neering, which draws upon fields such as hydrology, chemistry,
physics, ecology and human and natural history. Increasingly,
the tools of fluvial geomorphology have been adopted, used
and sometimes modified by non-geomorphologists, such as
scientists in allied fields seeking to incorporate geomorphic
approaches in their work, managers who prescribe a specific
tool be used in a given study, and consultants seeking to pack-
age geomorphology in an easy-to-swallow capsule for their
clients.

Frequently, a lack of geomorphic perspective shows in the
questions posed, which are often at spatial and temporal scales
smaller than the underlying cause of the problem. For example,
to address complaints about bank erosion problem, we have
frequently seen costly structures built to alter flow patterns
within the channel. Although the designers may have employed

hydraulic formulae to design the structures, they may have
neglected to look at geomorphic processes at the basin scale,
even at reach scale, so that the driving factors are not well
identified. Intervening on the symptoms rather than on the
underlying disease itself is usually not the best option to solve
problems. In such a case, controlling bank erosion through
mechanical means will at best provide only temporary and local
relief from a system-wide trend. Moreover, it is now well under-
stood that bank erosion and deposition are essential processes
to create the complex and diverse channel (Florsheim et al.
2008) and floodplain (Stanford et al. 2005) habitats needed by
many valued species. Thus, what is seen locally as a problem by a
riparian landowner may simply be part of the naturally dynamic
river behaviour that supports river ecology, and if bank erosion
has increased due to catchment-wide changes, even applying
geomorphic tools at the site scale only will ultimately prove inef-
fective (or at least not sustainable) and ecologically detrimental,
because the question was poorly posed at the outset without any
robust diagnosis and geomorphic expertise based on the range
of available tools.

The purpose of this book is to review the range of tools
employed by geomorphologists and to link clearly the choice
of tools to the question posed, thereby providing guidance to
scientists in allied fields and to practitioners about the sorts
of methods available to address questions in the field and the
relative advantages and disadvantages of each. This book is
the result of a collective effort, involving contributors with
diverse ages, disciplinary expertise, professional experience and
geographic origins to illustrate the range of tools in the field and
their application to problems in other fields or management
problems. This second edition has incorporated substantial
updates, involving new authors with significant contributions
to the field over the past decade.

Tools in Fluvial Geomorphology, Second Edition. Edited by G. Mathias Kondolf and Hervé Piégay.
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4  Chapter 1

1.2 Tools and fluvial geomorphology:
the terms

Webster’s Dictionary defines a tool as anything used for accom-
plishing a task or purpose (Random House 1996). By a tool, we
refer comprehensively to concepts, theories, methods and tech-
niques. The distinction among these terms is not always clear,
depending on the level of thinking and abstraction. Moreover,
definitions vary somewhat with dictionaries (e.g. Merriam 1959
versus Random House 1996) and definitions of one term may
include the other terms. In our usage, a concept is defined as
a mental representation of a reality and a theory is an explicit
formulation of relationships among concepts. Both are tools
because they provide the framework within which problems are
approached and techniques and methods deployed. A method
involves an approach, a set of steps taken to solve a problem and
would often include more than one technique. As suggested by
Webster’s Dictionary (Random House 1996), it is an orderly pro-
cedure, or process, regular way or manner of doing something.
Techniques are the most concrete and specific tools, referring
to discrete actions that yield measurements, observations or
analyses.

As an illustration, a researcher can base his approach on
the fluvial system theory and, within this general framework,
one of the field’s seminal concepts, the notion of bankfull
discharge as being the dominant/geomorphic discharge. To
test the relation between bankfull discharge and dominant
discharge, he can proceed step by step, identifying a general
methodological protocol, first to determine what is the bankfull
discharge, then its frequency. He may survey channel slope and
cross-sectional geometry and measure water flow and velocity,
or, if field measurements of flow were not possible, he might
estimate flow characteristics from the surveyed geometry and
hydraulic equations. In the general case, measuring flow in the
field can be undertaken using several methods, such as applying
a portable weir, salt dilution or current meter method, but
the former are normally better suited for lower flows than the
bankfull discharge being studied. The current meter method
could be based on various techniques, such as those to measure
flow depth and velocity (e.g. using Pryce AA or other current
meters, wading with top-setting wading rods or suspending the
meter from a cableway or bridge), mechanically improving the
cross-section for measurement, accounting for flow angles and
sources of turbulence when placing the current meter in the
water and estimating the precision of the measurement. Also,
given that channel capacity should be related to the long-term
flow frequency (Wharton et al. 1989), the researcher would nor-
mally analyse long-term gauging data (if available for the river
being studied), or synthesize from nearby gauges in the region.

Whereas some tools are specific to fluvial geomorphology,
others are borrowed from sister disciplines and some (such
as mathematical modelling, statistical analysis and inductive
or hypothetico-deductive reasoning) are used by virtually all
sciences (Bauer 1996; Osterkamp and Hupp 1996). Compared

with many other disciplines, fluvial geomorphology has had a
strong basis in field observation and measurement. Even with
increased reliance on remote sensing and laboratory analysis,
the field component is likely to remain critically important to
fluvial geomorphology. In this book, our aim is not to describe
generic tools, but to focus on tools currently used by fluvial
geomorphologists.

We define fluvial geomorphology in its broadest sense, con-
sidering channel forms and processes and interactions among
channel, floodplain, network and catchment. A catchment-scale
perspective, at least at a network level, is needed to understand
channel form and adjustments over time. Of particular rele-
vance are links among various components of the fluvial system,
controlling the transfer of water and sediment, states of equilib-
rium or disequilibrium, reflecting changes in climate, tectonic
activity and human effects, over time-scales from Pleistocene
(or earlier) to the present. Accordingly, to understand rivers
can involve multiple questions and require the application of
multiple methods and data sources. As a consequence, we con-
sider fluvial geomorphology at different spatial and temporal
scales, within a nested systems perspective (Schumm 1977).
Analysis of fluvial geomorphology can involve the application of
various approaches from reductionism to a holistic perspective,
two extremes of a continuum of underlying scientific approach
along which the scientist can choose tools according to the
question posed.

1.3 What is a tool in fluvial
geomorphology?

Roots and tools

Fluvial geomorphology being at the frontier of several disci-
plines, the choice of tools is fairly large and benefits from the
multiple influences of the training of the investigators. The geo-
logically trained fluvial geomorphologist may be more likely to
apply tools such as new techniques of dating such as OSL (opti-
cal stimulated luminescence) or isotopes (U/Th isotopic ratios,
¢, ¥7Cs and ?'°Pb) and techniques that provide subsurface
information (e.g. ground-penetrating radar). By contrast, the
investigator trained in river hydraulics and physics is more likely
to apply tools such as numerical modelling, flume experiment
and mechanics. Some geographers focus on spatial complexity,
interactions of fluvial forms and processes according to the
characters of the basin or bioclimatic regions within which
they are observed, the influence of human activities, vegetation
cover, or geological settings, employing tools such as remote
sensing, GIS or statistics and field metrology.

Within fluvial geomorphology, different branches are also
observed, with researchers tending to focus either on a histori-
cal perspective (palacoenvironmental studies) or on processes
(dynamic or functional geomorphology). Interactions with
biology are reflected in the term biogeomorphology (Viles 1988;
Gregory 1992) or ecogeomorphology (Frothingham et al. 2002;



