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Preface

These lectures represent a condensation of a number of colloquia,
seminars and discussions held at the Institute of Theoretical Physics
of the University of Graz during the last years and epitomize
- the principal lines of research undertaken by my group. From the
- “very beginning of my appointment at the University of Graz in
1947 T have been concerned with the task of bringing up a relatively
__small group of scientifically interested and open-minded co-workers
“and of stimulating them to sound scientific research. Since 1930

I myself have dealt with subjects of the kind treated in these
lectures, to which I was introduced by my late friend and teacher
TH. SexL. But also as assistant and co-worker of E. Fues and
H. TumrrinG °I frequently worked on these problems, constantly
using new methods and lines of approach. During the last years of
the war and the first ones afterwards I had the fortunate opportunity
to receive many stimulating ideas and comments on my work from
A. SoMMERFELD ‘on the occasion of my frequent visits to Munich.
Especially this last period, although partially connected with
personal difficulties and troubles of many kinds stemming from the
turbulence of lost-war readjustments, I consider to be one of the
most valuable times in my life. The experiences which T accumulated
then I later tried to put into effect, at least to a limited extent,
in order to create a productive climate for research in the spirit of
A. SoMMERFELD and his school of thought. The number of my
students who already hold respected positions in the scientific
community at least give me the confidence that my work and my
efforts were not in vain.

The following lectures are divided into two parts:
1. Electron Scattering and Nucleon Form Factors
2. Radiative Corrections

It was my intention in writing this summary not only to refer to the
work done at my Institute but also to give an account of related
research of many colleagues which seemed important to me. In
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addition, experimental results are frequently included for comparison
together with a discussion of the deviations which occasionally
appear. Especially the second part contains basic computations
which are required for the design of experimental arrangements
of current interest.

In the compilation of the text I was assisted in manifold ways
by the members of my Institute. The scientific achievements of
these co-workers are documented by their papers included in the
reference list and give evidence of their diligence and talent. In
editing these lectures especially Mr. P. PEsEc and Mr. F. WipDER
were of dedicated help. I would also like to thank my friends and
colleagues Prof. T. ERBer and Prof. R. RorrLIcH for a critical
reading of the manuscript. The typing of manuscript was done
p« “fectly and within shortest time by my secretary of many years,
Mrs. AxNELInSE KOBNELT; with the same skill she is doing so for
our annual ‘“Schladminger Universititswochen”. To all of them
I want to express my sincerest thanks.

Graz, Fall 1969 Paur UrBaN
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Part I
ELECTRON-SCATTERING AND NUCLEON FORM FACTORS

I. TheDirac-Foldy-Wouthuysen Transformation™

1. The Dirac Equation

The Dirac-Foldy-Wouthuysen (DFW) transformation will be dis-
cussed in its application to the Dirac equation, where it is best
known; essentially the same conclusions, however, also hold in
case of the Klein-Gordon equation [2], [3].

The relativistic motion of spin 3 - particles in an electromagnetic
potential A“(x) is governed by the Dirac equation; with the notation
k=c=1)

-

(ab) = a“b“ =a.“b“ =a“b"gw =a%%-2-b;

#=0° 9

cip.

A SRR

3 2,

o I - 0,

YeB=(_D, v=p2, a=9; (1,1)

* This transformation has been discussed by P.A.M. Dirac [1] as early as in 1934 (pﬁvate communica-
tion by Prof. P.E. Wigner).

1 Urban, Topics
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g); °1=(1 0)» °2=(i 0)9 °'3=(° _1):

1=(,

it has the form [A“ = (P, A):
(i¥ - e (x) -m) ¥(x) = 0. 1,2)
Here y(x) is a four-component spinor, 3}‘ we can take as in the

definition (1,1) or according to an equivalent representation; in any

case they fulfil the anticommutation relation
fy ¥, Y =k y¥ YV yt =gV, (1,3)

By the iteration of (1,2) we obtain a wave equation which differs from
the Klein-Gordon equation by the coupling between spin and electro-
magnetic field:

(if - e (x) + m) (iF - eA (x) - m) ¥ (x) =

M W 2 e
= - 9 - = 5 = 1
[(iau eAu) (i eA”) -m” + 3 F o‘w] ¥(x) = 0, (1,4)

where we used

ok _ ok Lkl _ m
B T s B i

=1
,‘yv] =3 (vuvv_ vuvu) .

F = BVA“ = 6‘4 Av, F

pv

-

4 Fuva‘w in (1,4) corresponds to-the term r% o-B

The term 3

of the nonrelativistic Pauli equétion. In momentum space, through

the transformation

U(x) = — 5 [a*p e TIPX y(p),

(2m)

(1,5)

equation (1,2) has the form
(B - eX-m)yp) =0, (1,6)
which for free particles reads

(-m)y @ =0. 1,7)



3
Equation (1,7) is a short-hand notation for actually four homo-
geneous linear equations involving the four components of the spinor

¥(p) ; the determinant of coefficients is

det (8- m) = ©2 -m?)? = @, -E)? @, +E)?, (1,8)
where E = +,/ 52 + m2 . Equation (1,7) therefore possesses two so-
lutions to each value of P, (+E), corresponding to the spin orien-
tations.

As usual the solutions corresponding to negative energy
.(po' = -E) are interpreted as antiparticles in the framework of
Dirac's hole-theory which establishes a complete symmetry between
particles and antiparticles (charge-conjugation symmetry).

Exactly this existence of antiparticles, which is necessarily
connected with each local relativistic covariant wave equation
(this is part of the conclusions drawn from the PCT theorem),
leads to difficulties in the interpretation and application of the
Dirac equation.

Writing (1,7) in Hamiltonian form

P y=Hy=(-p+8my, (1,9)
(in the following p may stand for e1ther p or 16“) we can for

example investlgate the operator X which may be interpreted as

velocity operator:

V=x=i[H,X]=a, (1,10)
by virtue of
(%, P1l =18, (1,11)

Sincea? = 1 the magnitude of the velocity ¥ is always equal to
the velocity of light c. In addition, the different components of the
velocity cannot be defined simultaneously since [mi ; °‘j] $0.

This, however, contradicts the possibility of observation of the

velocity. Further problems arise in applications if one wants to
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employ nonrelativistic wave functions, e.g. from nuclear physics,
together with the Dirac equation.

Thus it is evident that another representation for the Dirac e-
quation has to be found in order to make possible a physical inter-
pretation. A Dirac-particle with positive energy has to be repre-
sented by only two vectors in Hilbert space corresponding to its
two possible spin orientations. Therefore two components of the
four-component wave function in Dirac's theory are superfluous,
and we have to find a transformation reducing the Dirac equation
to a two-component equation, for example the nonrelativistic
Pauli-theory.

Large and Small Components, Pauli Equation

The Dirac equation (1,6) can be rewritten as two coupled e-
quations by expressing the wave function in terms of two-com-
ponent spinors¢and x:

- w - ' '
“"M ; 1,12)
(3. (5- e&)) X+(ed+m)p=Eg,
(0. (p-eA) o +(e®-m)x =Ex. (1,13)

Solving the last equation for x we get

1 — e -t
X = o.(p-eA)o, (1,14)

2[m + 3 (E - e®- m)]

and inserting this in (1,13) we arrive at an equation exactly e-
quivalent to the Dirac equation:

[o(p- eA) - 0.(p-eA) +ed] ¢ =(E-m)e .

2[m + % (E - e&- m)] (1,15)




In the nonrelativistic limit we have
E -m, ed, B, eK<<m; m+3(E-ed-m)~rm,
and therefore also

X <o,
or, in other words, the ratio of x and ¢ is of order g‘ or g $
Hence x and ¢ are called small and large components respectively.
The terms "even'' and ""odd" operator are closely connected with

this:
An operator is called ""even' if it contains no matrix elements

connecting large and small components, as e.g. ;, B. An even
operator commutes with 8.

An "odd" operater, however, contains nonvanishing matrix
el ements connecting large and small components; it anticommutes

with B.
We now discuss the nonrelativistic limit of (1,15), thereby

neglecting the small components. In this approximation to order
v/c we get the eigenvalue equation

Hyr ©= Engre- (1,16)
with the Hamiltonian of the Paul;—theory

H =0 (p-eA)5 . (p-eh)+ed =

2
(p—eA) _e_ (@.B)+eo . (1,17)

It is of course possible to evaluate higher orders in v/c by
this method; no eigenvalue equation, however, results and the
Hamiltonian ceases to be Hermitian. Foidy and Wouthuysen there-
fore suggested another method by which Dirac's theory can be

apprcoximated to any order in v/c by means of a two-component
theory [4].



2. The DFW Transformation (Free Case)

Foldy and Wouthuysen [5] found a unitary transformation for
the diagonalization of the Hamilton-operator. Then the Dirac equa-
tion decouples into two-component equations, one for positive and
one for negative energy. For free particles large and small com-
ponents are completely decoupled to any order in v/c; the tranc-
formation can be given in closed form.

This unitary transformation has the form*

@) =U(P) ¥ @), (1,18)
with
E+m+ (¥.p)
EEm) (1,19)
From (1,19) it can be seen immediately that

U*p) =U(-p)=U ). (1,20)

U (p) =exp{% arc tan (ax'f) }=

The Dirac equation (1,9)
P ¥=H ¢=(ap+mb)y,
then is transformed into

P o=H o, _ (1,21)

where
L= U@ HUP) =8 |p? +m?. (1,22)

Since this transformed Hamiltonian commutes with 8,

* The last expression is found with an expansion of arc tg a_n? and of exp{/] with the result that
SO Py, P 1 By whicicsions i _P _m
U(p) =cos (3 arctg r—n) + 3 sin (3 arc tg E) which gives with tg w = and cos w i the final

form.



[H(') , B] =0, then 3 (1%8)are projection operators for states
of positive or negative energy respectively, where two components
vanish identically in each case. Therefore the resulting equations

involve two components only:
@,
‘p"—'('p )’ po‘pi=iE (P*- (1,23)

The relevant equations decompose further still since also o 3 com-
mutes with H:a , and thus 3 (1 *03 ) again represents a projection

operator.
In order to get a better understanding of the transformation ob-

tained it is convenient to discuss the new wave function in configu-
ration space, as has been done by Foldy and Wouthuysen. We can
decompose any wave function as

¥@ = fu@) e *a% =y @+ v @;
v, ()= [ 4@+ BREER) 4 G P X g5, (1,24)
p' '
@ =3 -ERALD G P X g,
pl

Here w+ represents the wave function for positive, §_ the one for
negative energy. We now perform the DFW transformation:

0, ®=Uy & =

E

591 2(E,, +m)[1+‘““—+°‘—ﬂlu<p>e“’ %
o ®=Uy_&s=
E

- A3 [V (1 BBt EE G ofF X
pl

P 1,25)
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From this we clearly see that the upper components in (1,25)

correspond to positive, the lower ones to negative energy.
Inserting the inverse Fourier transform

- -

- 1 -ip' -X'
)= v (x") d
" (21)3 I ¢

we get the relation between old and transformed wave function

3=,
X,

0@ = [K(EX) $Ed*% =0, &) +o_@ (1,26)
where
E,
KE %)= — Bt oy 4

(ZwF 2 (Ep, +m)

+BOPY o i G20} a ¥ (1,21
E o'

Because of the momentum dependence of the DFW transfor-
mation the kernel K (i' 5 X' ) exhibits in its spatial dependence
no 8-function; the transformation is not a point-transforma-
tion. Had the wave-function in the old repreéentation been
localized in a point the transformed wave-function would be
smeared out over a finite range (of the Compton wavelength's
order of magnitude) [6].

An interesting problem is the interpretation of physical
quantities in this new representation. In case of the position-
operator we ask for the operator X of the old representation
which corresponds in the DFW representation to the usual
position operators i', and find with [x, ,f (p)] = 13—2)? (p)

RevtFu-x.ifa_18(ap)p+ (oXpIED (1,28)
2E“(E+m)




The time derivative in the new representation is

& %=1(Hy, X]=-1[%, 8 E]=p] , (1,29)

and in the old representation

EKoa[mE)=ut g xu %—%—9- (1,30)

The operator = ( mB+ ozp) applied to a positive or negative
energy wave function has the value +1 or -1 respectively. So we
get the result that the velocity operator for positive energy states
is +—% in either representation.

The operator X has been interpreted by Newton and Wigner [7] as
the position operator appropriate for describing localized states.
It has the properties '

[Xp X;1=0 5 [X;,p;] =18, | (1, 31)

which can be verified in a way similar to (1,30).
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3. The Foldy-Heisenberg (F-H) Picture

In addition Foldy and Wouthuysen have developed a method whic
enables a step-by-step diagonalization of the Hamiltonian in any
arbitrary order of v/c or1/m. This method is important when in-

teractions are present.
The Dirac-Hamiltonian can be decomposed into an even and odd

part:

H=mB+aﬁ=mﬂ+E+o; (1,32)
{B, o}=0, [B;€]=0"

These odd and even parts we can write
o=—§—{p,H] =3 (H-BHB),
€= ({BH}-2m) =} (H+pHB) - Bm . (1,33)

We now perform a unitary transformation with

U= eis 3
where

§=-100 -0 (BH-Hp), (1,34)
so that

¥ =UyH =U(H-4 o) U*.

The new Hamiltonian H' then has the form

_ 48 .. 3, -i8 _
H'=¢ " (H-i Bt)e =
= S i 38
=)
=H+i[S,H]-%[S, [S’H]]—?—Z_[S’ E‘].... (1,35)

where we took into account a possible explieit dependence of S on
time. Evaluation of the terms leads to



