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EQUIVALENTS OF THE RIEMANN HYPOTHESIS
Volume One: Arithmetic Equivalents

The Riemann hypothesis (RH) is perhaps the most important outstanding problem
in mathematics. This two-volume text presents the main known equivalents to RH
using analytic and computational methods. The books are gentle on the reader with
definitions repeated, proofs split into logical sections, and graphical descriptions of
the relations between different results. They also include extensive tables,
supplementary computational tools, and open problems suitable for research.
Accompanying software is free to download.

These books will interest mathematicians who wish to update their knowledge,
graduate and senior undergraduate students seeking accessible research problems in
number theory, and others who want to explore and extend results computationally.
Each volume can be read independently.

Volume 1 presents classical and modern arithmetic equivalents to RH, with some
analytic methods. Volume 2 covers equivalences with a strong analytic orientation,
supported by an extensive set of appendices containing fully developed proofs.

Encyclopedia of Mathematics and Its Applications

This series is devoted to significant topics or themes that have wide application in
mathematics or mathematical science and for which a detailed development of the
abstract theory is less important than a thorough and concrete exploration of the
implications and applications.

Books in the Encyclopedia of Mathematics and Its Applications cover their
subjects comprehensively. Less important results may be summarized as exercises
at the ends of chapters. For technicalities, readers can be referred to the
bibliography, which is expected to be comprehensive. As a result, volumes are
encyclopedic references or manageable guides to major subjects.
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RH is a precise statement, and in one sense what it means is clear, but what
it is connected with, what it implies, where it comes from, can be very un-
obvious.

Martin Huxley



Preface

Why have these two volumes on equivalences to the Riemann hypothesis
been written? Many would say that the Riemann hypothesis (RH) is the most
noteworthy problem in all of mathematics. This is not only because of its
relationship to the distribution of prime numbers, the fundamental building
blocks of arithmetic, but also because there exist a host of related conjectures
that will be resolved if RH is proved to be true and which will be proved
to be false if the converse is demonstrated. These are the RH equivalences.
The lists of equivalent conjectures have continued to grow ever since the
hypothesis was first enunciated, over 150 years ago.

The many attacks on RH that have been reported, the numerous failed
attempts, and the efforts of the many whose work has remained obscure,
have underlined the problem’s singular nature. So too has its mythology.
The great English number theorist, Godfrey Hardy, wrote a postcard to
Harald Bohr while returning to Cambridge from Denmark in rough weather
that read: “Have proof of RH. Postcard too short for proof.” He didn’t
believe in a God, but was certain he would not be allowed to drown with
his name associated with an infamous missing proof. David Hilbert, the
renowned German mathematician, was once asked, “If you were to die and be
revived after five hundred years, what would you then do?” Hilbert replied
that he would ask “Has someone proved the Riemann hypothesis?” More
recently, towards the end of the twentieth century, Enrico Bombieri, an Italian
mathematician at the Institute for Advanced Study, Princeton, issued a joke
email announcing the solution of RH by a young physicist, on 1 April of
course!

There are several ways in which the truth of the hypothesis has been
supported but not proved. These have included increasing the finite range
of values 7 > 0 such that the imaginary part of all complex zeros of £(s) up
to T all have real part % [68], increasing the lower bound for the proportion
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of zeros that are on the critical line R s = % [40], and increasing the size of the
region in the complex plane where {(s) can be proved to be non-zero [63].

This volume includes a detailed account of some recent work that
takes a different approach. It is based on inequalities involving some
simple accessible arithmetic functions. Broadly outlined RH implies that
an inequality is true for all integers, or all integers sufficiently large, or all
integers of a particular type. If RH fails, there is an integer in the given
range, or of the given type, for which the inequality fails, so the truth of
the inequality is equivalent to the truth of RH. Progress under this approach
is made whenever the nature of any counterexample is shown to be more
restricted than previously demonstrated. The reader may also wish to consult
the introductions to Chapters 3 to 7 for further details.

The relatively recent work depends critically on a range of explicit
estimates for arithmetic functions. These have been derived using greater
computing power than was available in the 1940s and 1960s when these
sorts of estimates were first published. In many cases the details are included,
along with simplified presentations.

Also included are a range of other equivalences to RH, some by now
classical. The more recent work depends on these classical equivalences for
both the results and techniques, so it is useful to set both out explicitly. It also
shows how some equivalences are more fundamental than others. This is not
to suggest new equivalences are easy consequences of older established ones,
even though this may be true in some cases.

The aim of these volumes is to give graduate students and number theory
researchers easy access to these methods and results in order that they might
build on them. To this end, complete proofs have been included wherever
possible, so readers might judge for themselves their depth and crucial steps.
To provide context, a range of additional equivalences has been included in
this volume, some of which are arithmetical and some more analytic. An
intuitive background for some of the functions employed is also included
in the form of graphical representations. Numerical calculations have been
reworked, and values different from those found in the literature have often
been arrived at.

To aid the reader, definitions are often repeated and major steps in proofs
are numbered to give a clear indication of the main parts and allow for easy
proof internal referencing. When possible, errors in the literature have been
corrected. Where a proof has not been verified, either because this author
was not able to fill gaps in the argument, or because it was incorrect, it
has not been included. There is a website for errata and corrigenda, and
readers are encouraged to communicate with the author in this regard at
kab@waikato.ac.nz. The website is linked to the author’s homepage:
www.math.waikato.ac.nz/~kab.
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Also linked to this website is a suite of Mathematica™ programs, called
RHpack, related to the material in this volume, which is available for
free download. Instructions on how to download the software are given in
Appendix B.

The two volumes are distinct, with a small amount of overlap. This volume,
Volume One, has an arithmetic orientation, with some analytic methods,
especially those relying on the manipulation of inequalities. The equivalences
found here are the Mdbius mu estimate of Littlewood, the explicit y(x)
function estimate of Schoenfeld, the Liouville A(n) limit criterion of Landau,
two Euler totient function criteria of Nicolas, the sum of divisors inequality
of Ramanujan and Robin and its reformulation by Lagarias, the criterion of
Caveney, Nicolas and Sondow based on so-called “extraordinary numbers”,
the criterion of Nazardonyavi and Yakubovich based on extremely abundant
numbers, the estimate of Shapiro that uses the integral of y(x), the Franel-
Landau Farey fraction criterion, the divisibility matrix criterion of Redheffer,
the Levinson—Montgomery criterion that uses counts of the zeros of the
derivative {’(s), the inequality of Spira relating values of zeta at s and 1 - s,
the self-adjoint operator criteria of Hilbert and P6lya, and the criterion of
Lagarias and Garunkstis based on the real part of the logarithmic derivative
of &(s). In addition, Volume One has criteria based on the divisibility matrix
of Redheffer and a closely related graph, the Dirichlet eta function, and an
estimate for the size of the maximum order of an element of the symmetric
group.

The Appendix includes tables of the numbers that appear in some of the
equivalences and a mini-manual for RHpack.

Volume Two [32] contains equivalences with a strong analytic orientation.
To support these, there is an extensive set of appendices containing
fully developed proofs. The equivalences set out are named Amoroso,
Hardy-Littlewood, Baez-Duarte, Beurling, Bombieri, Bombieri-Lagarias,
de Bruijn—-Newman, Cardon-Roberts, Hildebrand, Levinson, Li, Riesz,
Sekatskii—Beltraminelli-Merlini, Salem, Sondow—Dumitrescu, Verjovsky,
Weil, Yoshida and Zagier. For summary details, see the Preface for Volume
Two and Chapter 1 of Volume Two. In addition, Bombieri’s proof of Weil’s
explicit formula, a discussion of the Weil conjectures and a proof of the
conjectures for elliptic curves are included.

In the case of the general Riemann hypothesis (GRH) for Dirichlet L-
functions, in Volume Two the Titchmarsh criterion is given, as well as proofs
of the Bombieri—Vinogradov and Gallagher theorems and a range of their
applications. There is a small supporting Mathematica package, GRHpack.

The set of appendices for Volume Two gives comprehensive statements
and proofs of the special results that are needed to derive the equivalences in
that volume. In addition, there is a GRHpack mini-manual.
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A note concerning the cover figure. This represents integral paths for the
flow § = {(s) in a small region of the upper complex plane, rotated and
reflected in o = 0. It was produced using an interactive program written by
the author and Francis Kuo in Java®. It includes three critical zeros and three
trivial zeros.

Many people have assisted with the development and production of
these volumes. Without their help and support, the work would not have
been possible, and certainly not completed in a reasonable period of time.
They include Sir Michael Berry, Enrico Bombieri, Jude Broughan, George
Csordas, Daniel Delbourgo, Tomas Garcia Ferrari, Pat Gallagher, Adolf
Hildebrand, Geoff Holmes, Stephen Joe, Jeff Lagarias, Wayne Smith, Tim
Trudgian, John Turner and Michael Wilson. The support of the University of
Waikato and especially its Faculty of Computing and Mathematical Sciences
and Department of Mathematics and Statistics has been absolutely essential.
Cambridge University Press has also provided much encouragement and
support, especially Roger Astley and Clare Dennison. Last, but not least, I
am grateful for my family’s belief in me and support of my work.

Kevin Broughan
December 2016
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