Owen Bishop
in collaboration with

Audrey Bishop



Exploring FORTH

Owen Bishop
in collaboration with

Audrey Bishop

GRANADA
London Toronto Sydney New York



Granada Fechnical Books
Granada Publishing Ltd
8 Grafton Street, London WIX 3LA

First published in Great Britain by
Granada Publishing 1984

Copyright © Owen Bishop 1984

British Library Cataloguing in Publication Data
Bishop, O. N.

Exploring FORTH

|. FORTH (Computer program language)

L. Title I1. Bishop Audrey

001.64'24 Q.A.76

ISBN 0-246-12188-2

Typeset by V & M Graphics Ltd, Aylesbury, Bucks
Printed and bound in Great Britain by
Mackays of Chatham, Kent

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system or transmitted, in any form, or by any
means, electronic, mechanical, photocopying, recording or otherwise,
without the prior permission of the publishers.



Contents

Using This Boo)(

O 0 NN o e N —

(=)

11
12

Which FORTH? -

. Why FORTH?

Stacking It Up .,
What Is The S{éck? :
Numbers in Store ©
See How They Run
Interactive FORTH
Taking Decisions

ﬂOver‘ and Over

Sorting Numbers,

Kinds of Numbers

AND and OR

Appendix A: FORTH on Other Corhputers
Appendix B: ASCI1 Codes

Index of FORTH Words

Subject Index

vi

3
23
29
40
59
78

101

117

133

152

i67

171

172

175



Chapter One
Which FORTH?

There has been an escalating interest in FORTH among micro
owners during the past few years. As a result of this, the FORTH
language is being made available on an increasing number of
popular microcomputers. There are tapes, disks, cartridges and
special ROMs, all of which provide FORTH for those micros which
normally operate in BASIC. There is even a micro which has
FORTH as its resident language. This book is intended to be used
with any of these microcomputers, whatever version of FORTH
they use.

The reason that this is possible is that FORTH is an easily
transportable language. That is to say, you can write a ‘program’ on
one micro, then key it into a different micro with a reasonable
chance that it will work first time. The word ‘program’ was put into
quotes in the previous sentence because the idea of ‘writing a
program’ does not apply to FORTH as it does to BASIC and many
other languages. As will be explained in more detail later, FORTH is
based on a set of words, each of which has a specified action. The
writer of a version of FORTH supplies you with a set of a few
hundred words. When you ‘program’ in FORTH, you use these
words to define new words of your own. You extend the language
originally supplied to you by adding whatever words you need. You
can then use the words you have defined to define even more words.
The action of some of your words may be most elaborate. Yet
everything is done in short, easily understood steps.

‘With BASIC and many other languages, you put together the
statements and functions that are provided by the version of the
language, building up line upon line of program. The program
consists of a series of instructions telling the computer what to do. If
the BASIC of your micro lacks certain statements which you need,
you can often write a program line to do what is wanted, though
sometimes this is difficult and it is always less satisfactory. For



2 Exploring FOR TH’

example, if your BASIC lacks the REPEAT.. . UNTIL statements,
you can manage witlr GCTO, but the program runs much more
slowly. , - ;
There is nothmg in FORTH whlch eorresponds exactly to a
program. It is true that there are the sequences of words used in
defining other words, but these are short sequences more like
subroutines or procedures than programs. On the other hand,
FORTH words differ from subroutines or procedures because there
1s no ‘main program’ to jump back to after they have been executed.

(@)

FOR...NEXT
LOOP

CONDITIONAL
BRANCH

Fig. 1.1. The course of action when running (a) a program in BASIC; (b) an
application in FORTH.



Which FORTH? 3

Figure 1.1 illustrates the difference between FORTH and a
program-based language, such as BASIC. You can see how the
action of a program proceeds line-by-line, perhaps with loops and
repetitions, from the start of the program to the end. Itis a program
in the true sense; a list of things to be done.

FORTH has no such list. The action moves from one word to
another. It threads its way among the words of the language itself.
Exactly how this happens isexplained later. FORTH isdescribed asa
threaded language. One word calls upon the actions of others in

(b)

Fig.1.1 (contd)

performing its own actions. There is no ‘listing’ that you can read
from start to finish, to see what the program does. To follow the
action you must thread your way from word to word. But, since the
definition of each word is short and clearly related to the definitions
of other words, this is an easy matter. When working with FORTH,
we use or apply the existing words to create new words. For this
reason, it is best to speak of an application rather than a ‘program’.



4 Exploring FORTH

We will return to this topic in more detail in various parts of the
book.

Most of the words that are provided with your version of FORTH
will be the sanre as those provided in other versions and will have the
same action. There may be a few additional words which the
designer thinks you will find helpful. There will also be words which
relate to the special features of your computer and are not present in
other versions. For example, the Acornsoft FORTH for the BBC
Microcomputer has a word MODE which is used for changing the
display mode of the computer. This word does not apply to other
computers, such as the Jupiter Ace. But the FORTH of the Jupiter
Ace has some words of its own, including BEEP, to make a beeping
sound on its loudspeaker. The BBC FORTH does not have BEEP,
though you could write it using BBC FORTH if you wished to. As
far as possible, the words used in this book will be only those which
are likely to be found in all versions of FORTH.

What if this book uses a word which is not in your FORTH? This
does not happen often, but there are some generally useful words
which may not be in your version. Here we can rely on the ability of
FORTH to let you define the missing word yourself from the words
you have already. Some definitions based on the essential FORTH
words are given in Appendix A.

There are two main versions FORTH. One of these, FORTH-79,
is defined by a standard set out by the FORTH Standards Team.
The other main FORTH is that prepared by the FORTH Interest
Group in the United States of America. It is called fig-FORTH.
These two versions have a lot in common. As far as possible, this
book uses words which occur in both versions. Where there are any
significant differences, we shall try to point them out. Although
FORTH-79 is a standard, there are many versions of it. The point is
that the standard specifies a minimum set of words and how they are
to act. Any FORTH which has this minimum set and which has a
number of other standard features can claim to be FORTH-79. The
writers of such a version are then free to add any other words,
especially words like those mentioned above which cater for the
features of a given micro. Provided that special words are avoided,
an application can generally be transferred from one micro to
another, without any problems. On the other hand, the words which
apply to the special features of a micro are usually those which
provide the most effective displays or make best use of features such
as sound generators. Applications which do not make use of such
words are not exploiting the features of the micro to the best



Which FORTH? 95

advantage. This dilemma is not the fault of FORTH, but of lack of
standardisation in micros, especially with regard to screen format
and display routines. This is the point at which you may need to
adapt the suggestions given in this book to suit the special features of
your computer. Guidance is given wherever possible. By the time
you have covered the early chapters of this book, you will feel
confident to use the special words of your version of FORTH or to
write any other words you need to get the most out of your
computer.

To summarise

In this chapter you have learned that: |

® Writing applications in FORTH consists of using FORTH words
to define new FORTH words of your own.

® FORTH is a flexible, transportable language.

® There are two main versions of the language, FORTH-79 and
fig-FORTH.

~



Chapter Two

Why FORTH?

The increasing popularity of FORTH is due to several factors. One
of these, already mentioned, is its rransportability. This becomes an
increasingly important factor as more varieties of microcomputer
come on the market. Another factor is its speed.

FORTH is fast in two ways. It is claimed that writing an
application in FORTH takes only half the time required to write the
equivalent program in another high-level language, such as BASIC.
A FORTH application takes only one tenth of the time required to
write its equivalent in assembler. So here is a way to get your
computerinto action with the minimum of delay at the writing stage.

Onoé the application is written, it runs faster too. To check on
this, let us see how long it takes the micro to count up to 30000, using
~BASIC. Here is the program which does it. This took 16 seconds to
run on the BBC Microcomputer.

=10 FOR J = 1 TO 30000
=20 NEXT

Now run FORTH on your computer and key in the following
word definition. Type this in exactly as shown below, taking special
care to leave all the spaces. FORTH is particular about spaces!

¢ TEST 30000 1 DO LOOF 3§

When you have finished, press RETURN. The computer responds
with the familiar and reassuring ‘OK’ on the line below. This tells
you that it is ready for whatever you want it to do next.

Before doing anything further, consider what you have just typed.
The line defines a word named TEST. It was given this name as we
want to use it to test how fast the computer counts when using
FORTH. The name of the word is followed by two numbers.
Comparing this line with the BASIC listing above, shows that these
are the values for the end and the beginning of the loop. You will



Why FORTH? 7

notice that the number for the end of the loop comes before the
number for the beginning. This *back-to-front” habit of FORTH is
something we shall see a lot more of. Why it works this way is
explained later. It may seem strange at first, but you soon get used to
it, just as one soon gets used to driving a car on the opposite side of
the road when visiting a foreign country. Then it feels odd when you
come back home!

The loop which does the counting begins with the word DO and
ends with the word LOOP. In this definition there is nothing
between DO and LOOP, just as there was nothing in the BASIC
loop given earlier. All the micro is being asked to do is to loop back
to DO thirty thousand times.

Now to execute the word TEST. Key in the word TEST by itself
on the line below. Get your stop-watch ready, then press RETURN.
The ‘OK’ message appears as soon as the computer has counted to
30000. On the BBC Microcomputer, the test took only two seconds.
For this particular operation, FORTH is about eight times faster
than BASIC. Comparisons for other operations give different
results, depending on what has to be done by the micro, but it seems
that the claim that FORTH is up to ten times faster than BASIC is to
be believed.

The speed of FORTH makes it ideal for computer games. It also
has the advantage that the computer can perform a long series of
calculations in a reasonably short time. There are applications in
this book which take advantage of the speed of FORTH in both of
these ways. ,

High-level languages are of two main types: interpreted and
compiled. BASIC is an interpreted language. When a program in
BASIC is run, the computer goes through it, line by line, working
out what the various statements mean. The interpreter program in
the ROM of the micro interprets each BASIC statement, calling on
machine code routines to perform the necessary actions. The
program is interpreted every time it is run. Moreover, if there are
lines in a loop which are repeated, say 100 times, then those lines
have to be interpreted 100 times -each. Interpreting inevitably
requires time, which means that BASIC programs run relatively
slowly. But interpreters have an advantage. When you are working
with an interpreted language, it is easy to stop the program, make
small changes in it and then run it again. Programming is relatively
quick and easy, and you can instantly see the results of any changes
you make.

A compiled language, such as Pascal, has entirely different



8 Exploring FORTH

features. After you have written the whole program, it is compiled
into a machine code version which can be stored on tape or disk.
After that you use the machine code version. The conversion of the
program from a high-level language to machine code is done once
and for all. The compiled versian of your program runs exceedingly
fast, which is a big advantage. The corresponding disadvantage is
that it is not possible to make any changes in the program without
starting from the beginning and recompiling the new version. This is
annoying if there are bugs in the program, as there are almost certain
to be at first. It 1s much more important to get the program right
before it is compiled. Some people would say that this is a good
thing, for it forces you to work carefully and plan everything in
detail before you begin to program. Needless to say, a lot of other .
people are put off by this strict approach to programming, which is
perhaps one reason why Pascal has never become popular with
micro owners. Another disadvantage of compiled languages is that
they generally require more memory than is present in the average
micro. '
FORTH is neither interpreted or compiled, in the usual sense of
these words. When you define a FORTH word, the name of the
word is stored away, together with a string of numbers which link
your word to words you have used in the definition. Once a word has
been defined. it becomes a part of the language. This is roughly
equivalent to compiling, but it does not produce machine code. It
produces a word which refers to other words already compiled.
Some of these words, the primitives, perform the more fundamental
actions. The primitives have links to routines in machine code
which, in effect, will do all the real work when the word is executed.
When a word is executed, during the running of an application,
FORTH acts more like an interpreter. As each word is executed,
several other words may be called into action. Some of these call on
primitives which in turn bring various machine code routines into
operation. Since the words have already been ‘compiled’, interpreta-
tion is very fast. This gives FORTH its speed. However, since the
words of FORTH are each individually ‘compiled’, we have an
zxtremely flexible and accessible system. You define words one at a
time, and can test each word thoroughly before you go on to write
the next. If, later, a definition turns out to be unsatisfactory in some
way, you can re-define it without having to re-compile the rest of the
application. In this and other ways, FORTH allows the user to
interact freely with it, one of the advantages of an interpreted
language, yet has the speed and compactness of a compiled



Why FORTH? 9

language. It combines the advantages of both.

Since the core of FORTH has a relatively limited number of tasks
to perform, it is short and requires little memory. The core routines,
and essential word definitions of a typical implementation of
FORTH require only about 8 kilobytes of memory. In any given
application you need add only those words which are required by the
application. This keeps memory requirements to a minimum.

The flexibility of FORTH has been mentioned already. The
language is a highly structured one, yet you are allowed the freedom
to alter its structure to suit your own purposes. We shall see
examples of this in later chapters. It is‘considered by some that a
language that can alter itself and extengl itself so readily is not really
a language at all! This flexibility gives it several advantages in the
field of education. Other languages presemtzthe user with a rigid
system of statements or commands, and fixed ways of doing things.
This implies that the user has quite a lot to learn before beginning to
use the language. If there are difficult aspects of learning the
language, it is not possible to alter the language to make it easier.
With FORTH we can make things much easier for the beginner or
those with special difficulties. Words can be defined which do very
simple and easily understood things. We can give them names which
readily make sense to the learner. Words from the user’s everyday
vocabulary are more likely to convey meaning than words chosen by
someone else. The beginner can give any preferred name to the
. words. One can go further. If the name of anexisting FORTH word
is confusing to the user, there is no difficulty in re-defining it withan
entirely different name. For example, ‘duplicate’ is a word in English
not readily understood by young people, so the FORTH word DUP
may not be understood either. Perhaps MAKE-TWO would be
better understood in the earlier stages of learning FORTH. To add
this to the language, all that is required is:

¢ MAKE~-TWO DUF 3
0K

From then on MAKE-TWO will have exactly the same action as
DUP. In the same way it is easy to adapt the FORTH vocabulary to
suit those whose mother tongue is not English.

It must be evident from the above that the writers have a high
opinion of FORTH and its potentialities. Turn now to Chapter
Three and begin to experience the delights of FORTH for yourself.



10 Exploring FORTH

To summarise

In this chapter you have found out how to:

® Key in and use FORTH words.
® Define a new FORTH word, using existing FORTH words.
® Usea DO... LOOP loop.

You have learnéd that:

® FORTH is fast.
® FORTH combines the advantages of an interpreted language
with those of a compiled language.



Chapter Three
Stacking It Up

The stack is at the heart of all operations in FORTH. It is therefore
very important to understand what the stack is and how it is used.

The stack is a part of memory specially set aside for holding
numbers. It is not a very large part of memory, usually less than 100
bytes. The word ‘stack’ implies rather more than the related word
‘heap’. In a stack, things are arranged in some kind of order. There
are several ways of thinking about the stack. One of these is to
imagine a stack of postcards in a clip-board (Fig. 3.1). Putting them
on the clip-board stops the cards from getting out of order. In other
words, it prevents the stack from turning into a heap!

Fig. 3.1. The clip-board ready to demonstrate the stack.

When we look at the stack, we see only the top card. We will refer
to this as rop-of-stack. This particular card is only top-of-stack for
as long as the stack remains unaltered. We could add another card to
the stack, placing it on top of the stack. Now the original top-of-
stack card is covered and the newly added card becomes the top-of-
stack. Or we could remove the top-of-stack card and throw it away.
Then the ngﬁv‘ly exposed card which was below it becomes the new
top-of-stack. .

Note that when we add a card to the stack we always place it on



12 Exploring FORTH

top. We never try to insert it further down in the stack. Also, when
we remove a card from the stack, we always remove the rop card,
never a card from further down the stack. These two rules are an
essential part of the way the stack works.

Suppose we begin with an empty clip-board. This can be referred
to as an ‘empty stack’. It would help at this stage if you were to have
an empty clip-board beside the computer. You also need about ten
cards (or sheets of paper), and a pencil. If you do not have a clip-
board it does not matter; just keep the windows and doors shut so
there is no wind to blow the stack away! When you are ready with
this equipment, turn on the computer and call up FORTH.

First write the figure 4 on one of the cards (we will refer to them as
cards, even if you are really using scraps of paper). Place it in the
clip-board. This card is top-of-stack. The value stored at top-of-
stack is 4 (Fig. 3.2).

Fig. 3.2. Value 4 at top-of-stack.

When you first run FORTH, its stack is empty, just like the clip-
board was. To place 4 at top-of-stack, all you have to do is type:

4

and press RETURN. You will see the ‘OK’ prompt on the next
screen line, indicating that your instructions have been obeyed and
the computer is waiting to be told what to do next.

How do we know that 4 has really been placed at top-of-stack?
FORTH has a word which tells the computer to take the top number
off the stack and display it. This word is the shortest word possible:

*

No, it’s not a dirty mark on the page, it is a full-stop. When we refer
to it, we callit‘dot’. Key in‘dot’, then press RETURN. The sequence
so far is shown in Fig. 3.3. As you can see, the computer has
displayed 4, the number stored at the top-of-stack.



Stacking It Up 13

4
OK
4 0K
Fig. 3.3.
Can you get the computer to display it again? Try ‘dot’ followed
by RETURN. What happens next depends on the version of

FORTH you are using. On the 8BC Microcomputer, for example,
you get:

*

0 . 7 MS5CG # 1

The words MSG # 1 refer you to error message no. 1. If you look this
up in the manual, you will find that it means ‘Stack empty’.
On the Jupiter Ace you will get:

—18572ERROR 2

The first number may be different, but the error message will always
* be number 2, which means ‘Stack empty’.

It seems that the 4 is no longer on the stack. It is the same as if you
had taken the card from the clip-board, and pinned it up on the wall
for everyone to see (Fig. 3.4). Do this now - take the card from the
board and put it where everyone can see it (no need to pin it to the
wall!).

Fig. 3.4. Value 4 displayed, leaving the stack empty.

To sum up so far: we put 4 on the stack. Then we used ‘dot’. The
action of ‘dot” was to take the number from the top-of-stack, leaving
the stack empty, and display the number on the screen.

Now put the 4 card back on the board, so it is once more top-of-
stack. Next write 55 on another card and place this on top of the 4
card. The 55 card is now top-of-stack. The 4 card has become
second-on-stack. Finally write 666 on a third card and put this on
top of the 55 card (Fig. 3.5). Remember we always add to the top of



