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Introduction

Analysis is concerned with continuity and convergence. Investigation of these
ideas led to the notions of topology and topological spaces. Once these
had been introduced, they became subjects in their own right, which were
investigated in fine detail to see how far the theory might lead (an excellent
illustration of this is given by the fascinating book by Steen and Seebach [SS]).

In practice, however, a great deal of analysis is concerned with what
happens on a very restricted class of topological spaces, namely, the Polish
spaces. A Polish space is a separable topological space whose topology is
defined by a complete metric. Important examples include Euclidean space,
pathwise-connected Riemannian manifolds, compact metric spaces and sepa-
rable Banach spaces.

The purpose of this book is to develop the study of analysis on Polish spaces.
It consists of three parts. The first considers topological properties of Polish
spaces, and the second deals with the theory of measures on Polish spaces.
In the third part, we give an introduction to the theory of optimal transportation.
This makes essential use of the results of the first two parts, or modifications of
them. It was, in fact, study of optimal transportation that led to the realization
of how much its study required properties of Polish spaces, and measures
on them.

There are three important advantages of restricting attention to Polish
spaces. First, many of the curious complications of the general topological
theory disappear. For example, a subspace of a separable topological space
need not be separable, whereas a subspace of a separable metric space is always
separable. Secondly, the proofs of standard results are frequently much easier
in this restricted setting. For example, Urysohn’s lemma for normal topological
spaces is quite delicate, whereas it is very easy for metric spaces. Thirdly,
Polish spaces enjoy some very important properties. Thus it follows from
Alexandroff’s theorem that a topological space is a Polish space if and only

1



2 Introduction

if it is homeomorphic to a G subset of the Hilbert cube H = [0, 11N, which
is a compact metrizable space. From this, or directly, it follows that a Borel
measure on a Polish space is tight (Ulam’s theorem: the measure of a Borel set
can be approximated from below by the measures of compact sets contained in
it). It also means that we can push forward a Borel measure on a Polish space
X to a Borel measure on a compact metric space containing X. This greatly
simplifies both the measure theory and also the construction of measures. In
fact, I believe that almost all the probability measures that arise in practice are
Borel measures on Polish spaces; one important exception, which we do not
consider or need, is the theory of uniform central limit theorems.

One major advantage of restricting attention to Polish spaces is that it
is not necessary to appeal to the axiom of choice. Instead, we proceed by
induction, using the axiom of dependent choice; we make an infinite sequence
of decisions, each possibly dependent on what has gone before.

In analysis, there are a few fundamental results which require the axiom of
choice. The first is Tychonoff’s theorem, which states that an arbitrary product
of compact topological spaces, with the product topology, is compact. We do
not prove this, or use it. On the other hand, we do prove, and use, the fact that
a countable product of compact metrizable spaces is compact and metrizable.

Secondly, there are two fundamental results of linear analysis which need
the axiom of choice, using Zorn’s lemma. The first of these is the Hahn—Banach
theorem (together with the separation theorem). Using induction, we prove
weak forms of these, for separable normed spaces; this is sufficient for our
purposes.

But for completeness’ sake we also give the classical results, using Zorn’s
lemma; Here we first prove the separation theorem, showing that it essentially
depends upon the connectedness of the unit circle T, and then derive the Hahn—
Banach theorem from it.

The other fundamental result which requires the axiom of choice is the
Krein—-Mil’man theorem, which states that every weakly compact convex
subset K has an extreme point. Again, we only need, and use, the result in
the case where K is metrizable, and we prove this without the axiom of choice.

The fact that we avoid using the axiom of choice suggests that the proofs
should, in some sense, be less abstract and more constructive. Unfortunately,
this is not the case; the arguments that are used are frequently indirect
(consider the collection of all sets with a particular property), so that for
example a typical Borel subset of a Polish space does not have a simple
description.

Let us now describe the contents of the three parts of this book in more
detail.



Introduction 3

Part I: Topological Properties

Although it is assumed that the reader has some knowledge of general topology
and metric spaces, the first two chapters give an account of these topics,
including Tietze’s extension theorem, Baire’s category theorem and Lipschitz
functions.

This leads to the notion of a Polish space, a separable topological space
whose topology is given by a complete metric. A fundamental example is given
by a compact metrizable space, and Alexandroftf’s theorem is used to show that
a topological space is a Polish space if and only if it is homeomorphic to a Gs
subspace of a compact metric space, and in particular homeomorphic to a G;
subspace of the Hilbert cube.

We shall need to consider suprema of sets of real-valued continuous
functions. Such functions are lower semi-continuous, and we consider such
functions in Chapter 4. A lower semi-continuous function on a compact space
attains its infimum, but this is not necessarily true for lower semi-continuous
functions on a complete metric space. We establish its replacement, Ekeland’s
variational principle, together with two of its corollaries, the petal theorem and
Danes’s drop theorem, and various other applications.

Metric spaces have more structure than a topological one, and Chapter 5
contains an account of uniform spaces; uniformity is particularly important
when we consider locally compact topological groups, in Part I1.

Chapter 6 is devoted to showing that the space of cadlag functions is a
Polish space under the Skorohod topology; many stochastic processes, and
their underlying measures, lie on such spaces, and this helps justify the claim
that almost all probability measures of interest lie on Polish spaces. Further
examples are given by separable Banach spaces and Hilbert spaces; these are
principally used to introduce the notion of convexity.

The rest of Part I is concerned with convexity. The Hahn—Banach theorem
is one of the key results here, and we give proofs of appropriate results, both
without and with the axiom of choice. For us, the Hahn—Banach theorem is
essentially a geometric theorem showing that two suitable convex sets can be
separated by a hyperplane. It also leads onto the notion of weak topology.

The Legendre transform provides an important duality theory for convex
functions, and this leads naturally to the concept of subdifferentials and
subdifferentiability. We prove the Bishop—Phelps theorem, and also introduce
the notion of cyclic monotonicity.

The rest of Part [ is concerned with convex sets which are compact and
metrizable in some suitable topology. We prove versions of the Krein—-Mil’man
theorem, Krein’s theorem and a swathe of fixed point theorems, many of which
are used later.



4 Introduction

Part I1: Measures on Polish Spaces

We expect that the reader has some knowledge of abstract measure theory, but
Chapter 14 contains a survey of the basic results. Chapter 15 contains some fur-
ther results: we introduce the Banach space M(X) of finite measures on a Polish
space X, its subspaces L'(1) and Orlicz spaces (with the use of Legendre
duality). We give von Neumann’s Hilbert space proof of the Radon—Nikodym
property and a proof of the strong law of large numbers (to be used later).

In Chapter 16, we investigate Borel measures on Polish spaces. We prove
regularity and tightness properties; we may not know what a typical Borel set
looks like, but we can approximate the Borel measure of a Borel set from the
outside by open sets, and on the inside by compact sets. This leads to Lusin’s
theorem, which says that if p is a Borel measure on a Polish space X then a
Borel measurable function on X is continuous on a large compact subset.

So far, all is theory, and no measures, other than trivial ones, have been
shown to exist. We remedy this by showing how to construct Borel measures on
the Bernoulli space €2(N), and then, pushing forward, constructing measures
on compact metric spaces and Polish spaces. We prove the Riesz represen-
tation theorem, and use this to give a measure-theoretic proof of the Stone—
Weierstrass theorem.

We then show how Borel measures can be disintegrated, and establish the
existence of Haar measure on compact and locally compact Polish spaces;
we follow an account by Pedersen to show that this last result is relatively
straightforward.

In Chapter 17, we come down to earth and consider Borel measures on
Euclidean space, where the point at issue is the differentiation of measures
and of Borel measurable functions. We establish Lebesgue’s differentiation
theorem and Rademacher’s theorem on the differentiability almost everywhere
of Lipschitz functions.

We now proceed to study one of the key points of this chapter, namely, the
weak convergence of measures. We show that there are various metrics which
define the weak topology w, and show that although the unit ball M;(X) is
generally not metrizable, the space of probability measures P(X) is a Polish
space. Examples of weak convergence include the central limit theorem and the
empirical law of large numbers. Finally, uniform integrability is investigated.

Part II ends with an introduction to Choquet theory on a metrizable compact
convex set. The theory is notoriously difficult for general weakly compact
convex sets, but the difficulties disappear in the metrizable case.

Parts I and II contain more than two hundred exercises. These are usually
very straightforward, but most are an essential part of the text; do them.



