Broadview @ Pearson - BERBRBER

www.broadview.com.cn

[%£] John L. Viescas
[#0] Douglas J. Steele

[Z] Ben G. Clothier

B s GEIIF LA

we==s http://www.phei.com.cn

« Rk @B R

(FhxH)

Effective SQL

i = R SQLIS AU N6 1 R AT IA

Effective SQL

61 Specific Ways to Write Better SQL

[(%] John L. Viescas
[#0] Douglas J. Steele &
[22] Ben G. Clothier

% F I ¥ & ARAL
Publishing House of Electronics Industry
JE5-BEIING

mEE N

AALEE T X RGBS H7 5 Rk 5 RSB, 10152 8% T Anfa it SQL %3 5 fift th 52 F< 1]
WL, LAB AR AT Bt PSR BB B B, R — A4 SQL B ShRESCER 15 SQL S %7 PNERES
AW, E M FTA A SQL 55 (H:Ah 4+ IBMDB2, Access, SQL Server, MySQL, Oracle, PostgreSQL)
MgmfEtem. boh, SQLIELRRABII—/INBSNA, MEIRERLF 501, Bl oy BEAE 5 TR
B, ABWAY k. mRi%EH 2N SQL K, BLABIEBIRK A TS SQL #K,

Authorized reprint from the English language edition, entitled EFFECTIVE SQL: 61 SPECIFIC WAYS TO
WRITE BETTER SQL, ISBN: 0134578899 by John L. Viescas, Douglas J. Steele and Ben G. Clothier, published
by Pearson Education, Inc, Copyright © 2017 Pearson Education, Inc.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording or by any information storage retrieval system,
without permission from Pearson Education, Inc.

ENGLISH language edition published by PUBLISHING HOUSE OF ELECTRONICS INDUSTRY, Copyright
© 2017

ABIESCRENR % A HARAL 1 Pearson Education 5 A= 3 7 H M IF AT PR 2 7145 -0 7 Tl H AR
the REMMETEBEL T, RELUEM G R a2 A BTy,

A BURA ERHSEN (R BT, W1 B TR Rk [S i X) 4B % 47
AAHSCRENRIG A Pearson Education 1 H: $# HMUSE MODS bR, Tobn% s T raaes.

WAL B A RIIL S E9. 01-2017-3321

BBERRE (CIP) #i2

Effective SQL: 4’5 & il & SQL i A1) 61 44 %4 57 = Effective SQL: 61 Specific Ways to Write Better SQL ;
3/ (&) 9% - L- @i (John L.Viescas), (f) i#Hilli - J - #i# /R (Douglas J.Steele), (3)
A - G- KA /R (Ben G.Clothier) 2. — Jbzt. Tl Rk, 2017.8

(R RBER)

ISBN 978-7-121-32284-6

[QE--II. @%)---@jf - @A - IIL. ®SQL & 25 — ¥ IV. ®TP311.132.3

H R A B A5 CIP BT (2017) 45176715 5

TAEGwiE: KEM
Bl Rl =4 DENREA PR F
0T ZHEEDENEERA R
HREST: BT Tk ke
RN Ak 173 155 5% : 100036
F A, 787x980 1/16 Elgk. 21.75 FH. 4308 F¢
R k. 20174E8 A 1R
Bl k. 20174E 8 A% 1 kENRI
7 ffr: 89.00 ¢

JUBTIESK Tl AR A PR A B P, 1 WS40 0 VA e . 5B Rk, i S5 AR R AT I0IE &
I Z B MBI HLIE . (010) 88254888, 88258888,

R BRI R Wb 3E 2lts@phei.com.cn, #RRRAAREEH 1% & BB E dbqq@phei.com.cn,
ABEWHEA LR (010) 51260888-819 faq@phei.com.cn,

SQL 788 M [AR i B8 FE TR 5 10 30 RAE B, EARA/ERZ BRI e LS.
BL7E SQL oAb A e, EtERESE SRS . B AETFHLR AT LA K5 Uik Web # AR
RAE(E T SQLIES . $EEA —2 NoSQL $uii e, HALRIF AR (B ER) ENAMEH
SQL. B NoSQL BRI T SQLIEH# M, BE NoSQL ' “No” HRER “AX
J&” SQL (Not Only SQL)

T SQL [kt , VR T RELEAR 27 i F R o3R8 P R A SQL. A — 14
SQL B MR (MR , B SQL IE S 7 H MR = fh 22K L, {Hid2
A2), X 25 BIVE TFX SQL FRMERIAR RIFRAE . AR A A S AR IR B R Z 2R o
SIS X AR [FI =5 SQL 5 RIS I, X T RELL SQL 22 R R AR R A Y.
A4 SQL B T — A BB A M (MBEHRESE LFWATRELER) , MEIVRR
T el AR R SQL A 5 4E SQL & IR T SQL & iR .

T2 W R R M2 T RN IR Y UYL, ARSI A O AR5
RS A, AREBEIEE S, AB@E T —RAREEK ., RIEMI SQL ZWILH, I
RTINS SQL Aseke . AIEMMERE, Dt B M IRETE

SQL E—FhTh eI K HAE 2B P = o ME N EEMERR SQL AR R X BVEEE
RS 5%, IR EZERBA 2 FIH SQL WRE S . 7o/ 3f# SQL B = e LAK
8 2R TE R AR, AT LLFE S SQL BYDh BRI B M RE R AF M AR SF , B RER
O TF & AR . AR T ot NEARLBRE BY KK ¥ .

Keith W. Hare

JCC &6 A PR/ 8] & B8R 19)

¥ B INCITS dm32.2—— SQL 47t £ R 4 & £/
ISO/IEC JTC1 SC32 WG3 B = SQL i+ EZ R 2B A

R

—EBMBOAK G St HR— ML TFEE—NE | SRR S A i
AERBEATT ISR E R, REW SR “%F” AR N — A LT) A5 7 B — A
R BA

B, AR H R AT %K 4w 48 AN H £ 78 Trina MacDonald, Trina A% John fii
HIRFPRE SQL Queries for Mere Mortals — 4T3 % K Effectiue Software Development 5\
T, G AL T EE M. John 418 T — 3% BLIF [B Ak 4 B A Sl 52 ik i A5 5 ,
WRZETAE EATEESS, Jo R /R Tom Wickerath ZET0 HATEHS T EhBh A R e,

Trina [R ATHERE T A 45 49 P9 2545 F Songlin Qiu, EMM B FRIITWM T HE
Effectiue Software Development Z5AASHIZATS, e 8t Songlin 4 FRA M5 S

Trina K0Pk T HERBBARGRARAIBN, 1355 Ho o R AR T TR 8 A1 T
THRBE TR ZH AR 5, 181 3F MySQL) Morgan Tocker il Dave Stokes; Jiifit 15
PostgreSQL [Richard Broersma Jr.; i 3 IBM DB2 Fll Oracle [Craig Mullins; /8% 1 ¢
Oracle [Vivek Sharma,

EERWERD, RIVABHGE. %48 F Effective C++, Third Edition (/£ % Scott
Meyers, WS 5PIRMMAAS, FEUTIEAASAE R, Effective Software Development %3)\
Formes T RAVRLZ FROEIN, FEAF SN Effective Software Development Z& 51|\
RELiCE TR

Julie Nahil, Anna Popick [l {1 BAFI Barbara Wood %5 BiFfi 18 H754 1 RREYESR ,
TIAREBA RN

BoJa, AR BEHTRA M RER ZRAER K e SRR T AT A BT
(FEEFNSEES o

John Viescas

®E, e

Douglas Steele

mEX, RREE, FNEHk
Ben Clothier

XE, FAEMRMN, B

KEEA

John L. Viescas & —{ii A7 i 45 4F Mlk 2256 970 S B e] o At A L.
MRS HTIIFGS, b IBM KERIHLRGE I KRBV SRR o e di
b S50 BRI L TAET 6 4F, 7EAR AT 30 4 R TH 5T IBM K

| § UL FE P S OB AE . JF R LR P R T TT“FF%HEBHLI?E
W], John mﬁETLﬁﬂﬁﬁﬁﬁ%‘?jﬁ%lﬁﬁﬁﬂﬁﬁﬂ%u I LA) 5 R

John 1988 4E il A Tandem i+HEHLA H], 7EHE H At 2 55 7E Tandem 2 7 3¢ [P4 #0 84
DX & RSl 7 B O S RO BE P . T R F B8 AT T F T BOR T 2 4 5% 22 20 B0 44 12 4 2
% %i—NonStop SQL. John 1989 45 [i) % —4<+45, A Quick Reference Guide to SQL
(Microsoft Press, 1989 4F) , %43 —AXf [T ANSI-86 SQL F5#f. IBM i) DB2, 4K
) SQL Server, H ‘B 3072y A Oracle, VA K Tandem /A] 4 NonStop SQL 2Z [i] (15 ¥ AH fBA
YRR A58E . T 1992 4E MK Tandem A RIAKEE T Running Microsoft® Access (5
1 Jit, Microsoft Press, 19924F) . MEE&E | 4 I MA#Y Running Microsoft® Access, LA
J Running 2 3 W) J&5 EE4E f——3 D HRAS B9 Microsoft Office Access Inside Out (Microsoft
Press, 2003 4F. 2007 4£. 2010 4F) # Building Microsoft® Access Applications (Microsoft
Press, 2005 4F) . flbth 2545 SQL Queries for Mere Mortals®, Third Edition (Addison
Wesley, 2014 4F) MIVEH . John H BIORFFE S 2 AWM T REEAE EE AR BA
ML % (MVP, Most Valuable Professional) [J425% (1993 4F 2% 2015 4F) » John S
FEEEERER T 30 Z4F,

i Douglas J. Steele)\ 250 1% K BIHLAI ABLZE N IR AU TAE# 45 4F
Ry R/, TP R) o 78 2012 4EB4KHT, fE—F KA E PR
B 702 7 T T 30 4F SRR R U 0 P AR R R SCOM T 55
W I Windows 7 #E] Bl eakifid 10 TG b, {HRE0E EME0E Ege
fb i EZ TAEH A,
Douglas # BN IE AR A ME LK (MVP) it 17 4, RS T KEXT Access
B FE 19 3C %, Douglas j& Microsoft ® Access ® Solutions: Tips, Tricks, and Secrets from
Microsoft Access MVPs (Wiley, 2010 4F) A& #H, WEREZBHEARE .

X KTEHR

Douglas JEH 8k /7 KA RGEERTT TRt , & i T TEAE S0 sl P (9 P i se . (24
PR, FE 20 AR 70 UK, R NRMEGRBMRAF !) M &l BT IE T a9 35 R 75 5 (1
A ZRZHE RRE G R FEBNIT R B LF0L) o Ml ik T s 3 5l 2 W 2 b
PRI S R R B . (B e Wi, ZRmEE, &) .

Douglas F1ftl 9 3 7 75 11 52 K %2 K g 48 2 WL B0k Ji i 34 4. 328 T L@ i i5 46
mvphelp@gmail.com Bt R Douglas.
Ben G. Clothier /2 Jill &} & JE —45 1 Access Fl SQL Server JF & 42\l IT Impact 2%
A B ST, A8 7525 24 1) | Street Technology il Advisicon 2T 4
BRI, 322 A S /NS A AR D7 SE 31/ B 400l 45 2 AR I Access T I 9 4]
KT HE—ROAERE: —FOKRA AN TAREMEFEHRS, 4
RS 7R {6l T 8 B PR IS0 A B2 DA B I B as 2) AT T B B R 6 . Ben 7E UtterAccess &
GUEHLR , JFHA Teresa Hennig, George Hepworth, Doug Yudovich &3 T Professional Access®
2013 Programming (Wiley, 2013 4F) ; Jf5 Tim Runcie Fl George Hepworth —#243 % T Microsofi®
Access in a SharePoint World (Advisicon, 2011 4F) ; Ben i J& Microsoft® Access® 2010 Programmer’s
Reference (Wiley, 2010 4F) —H B4R A1ER . M3 8K SQL Server 2012 fift #t J5 FAIE
MySQL 5 AUEFF R HSFUESS . M 2009 SEFF 8 Ben — B RIMAIIBAMAELEER (MVP) .

Ben FMfbFEF Suzanne, JLF Harry {E7E R FR ST M X LR E R,

KT BEAR G

Richard Anthony Broersma Jr. J& Mangan 23] (€ EINAI4EJE WANRERT) B9 RS TN,
A 11 450 PostgreSQL B4 2 N AR FF T R 450 .

Craig S. Mullins J2— {3 $C4f & B AR g 2K . WF 5% G AUBLIR) 2 Mullins Consulting 23] 4
SR 3 IR], Craig #% IBM 1T Aok IBM 4 BB (0] F1 IBM 1 % 43 BT 0. Craig 76 % JE 84
JE RS &7 WA L 30 FE A, M DB2 M5 — A RAFF R M ZERE] . IR 7T RE 2l
it Craig #9484 45 138 fth: DB2 Developer’s Guide, Sixth Edition (1BM, 2012 4¢) Fl Database
Administration: The Complete Guide to DBA Practices and Procedures, Second Edition (Addison-
Wesley, 20124F) ,

Vivek Sharma H fij 2 H & SCA A 9 Oracle D H AR 5IR G =7 BT FRBE AL
%K. MBTE Oracle Fi AR A & M1t 15 FFH TAELRK, Vivek 7E Oracle AR IR 1 H AL AE
VE, TERUNAER Oracle B0 FEVERELRADT Z AT, Ahi) 3% TAER Oracle MEBRGEMIT K. 1EH
Oracle BB EL 5K, Vivek K TR/ AIZEH Bh % P A8 S M Oracle R G884 (% A P 72 85098 2
J7 W AT RAEAR A, Ahad 235 4 1 R B SO TR A IR 55 AR R VR H R B . flurE
2012 41 2015 4E[B] K B SCENBER P TR “4EEERF N o M STEMA P viveklsharma.
wordpress.com LA 2 OTN (www.oracle.com/technetwork/index.html) R LM Oracle B
BARIE,

Dave Stokes & Ffl B 30/ A 19 MySQL #E X 223, {th L) Al 8% /& MySQL AB F1 Sun A MySQL
INUEZFE ., A7 T4 09 4 i 3 5= BB M 36 [0 JIE D3 22 (American Heart Association)
i kA Al (Xerox) , TAEMR I TAEFE (anti-submarine warfare) HE % B B W & # (Web

developer) .

Morgan Tocker J2 ! 5 3C/A 7] MySQL AR 45 28 i 7= fh 238 . A3 St 250 T4, A48 S8
B 5H X TAE. Morgan EETMEREHRE.

ANk 55

AT A PO S A X P (www.broadview.com.cn), 395 B kA4 B

o RIZBIR: BXTBHPABEIESE WA IE 32 B ARAS, RN, 3G SO s
FEX A (TEBIASE L F A5, A4 AT SR HRFAH B 42 %51)

o ZREEY: TEIM [T kAR B TSRS, SERA MM E R 5
Tito

UL : http://www.broadview.com.cn/32284

DOEr 0

Introduction
A Brief History of SQL
Database Systems We Considered
Sample Databases
Where to Find the Samples on GitHub
Summary of the Chapters

Chapter 1: Data Model Design

Item
Item
Item
Item
Item

Item
Item
Item
Item

i £

R

© N

Verify That All Tables Have a Primary Key
Eliminate Redundant Storage of Data Items
Get Rid of Repeating Groups

Store Only One Property per Column

Understand Why Storing Calculated Data Is
Usually a Bad Idea

: Define Foreign Keys to Protect Referential Integrity
: Be Sure Your Table Relationships Make Sense

When 3NF Is Not Enough, Normalize More
Use Denormalization for Information Warehouses

0N O O =

11
11
15
19
21

25
30
33
37
43

xiv Ha#

Chapter 2: Programmability and Index Design

Item 10:
Item 11:

Item 12:
Item 13:
Item 14:

Item 15:

Item 16:

Item 17:

Factor in Nulls When Creating Indexes

Carefully Consider Creation of Indexes to Minimize
Index and Data Scanning

Use Indexes for More than Just Filtering
Don't Go Overboard with Triggers

Consider Using a Filtered Index to Include or
Exclude a Subset of Data

Use Declarative Constraints Instead of
Programming Checks

Know Which SQL Dialect Your Product Uses and
Write Accordingly

Know When to Use Calculated Results in Indexes

Chapter 3: When You Can’t Change the Design

Item 18:
[tem 19:
Item 20:
Item 21:

Use Views to Simplify What Cannot Be Changed

47
47

52
56
61

65

68

70
74

79
79

Use ETL to Turn Nonrelational Data into Information 85

Create Summary Tables and Maintain Them

Use UNION Statements to “Unpivot”
Non-normalized Data

Chapter 4: Filtering and Finding Data

Item 22:

Item 23:
Item 24:
Item 25:

Item 26:
Item 27:

Item 28:

Item 29:

Understand Relational Algebra and How It Is
Implemented in SQL

Find Non-matches or Missing Records
Know When to Use CASE to Solve a Problem

Know Techniques to Solve Multiple-Criteria
Problems

Divide Your Data If You Need a Perfect Match

Know How to Correctly Filter a Range of Dates on
a Column Containing Both Date and Time

Write Sargable Queries to Ensure That the Engine
Will Use Indexes

Correctly Filter the “Right” Side of a “Left” Join

Chapter 5: Aggregation

Item 30:
Item 31:

Understand How GROUP BY Works
Keep the GROUP BY Clause Small

90

94

101

101
108
110

115
120

124

127
132

135
135
142

Item 32:

Item 33:

Item 34:

Item 35:

Item 36:
Item 37:
Item 38:

Item 39:

Leverage GROUP BY/HAVING to Solve Complex
Problems

Find Maximum or Minimum Values Without
Using GROUP BY

Avoid Getting an Erroneous COUNT() When
Using OUTER JOIN

Include Zero-Value Rows When Testing for
HAVING COUNT(x) < Some Number

Use DISTINCT to Get Distinct Counts
Know How to Use Window Functions

Create Row Numbers and Rank a Row over
Other Rows

Create a Moving Aggregate

Chapter 6: Subqueries

Item 40:
Item 41:

Item 42:

Item 43:

Know Where You Can Use Subqueries

Know the Difference between Correlated and
Non-correlated Subqueries

If Possible, Use Common Table Expressions
Instead of Subqueries

Create More Efficient Queries Using Joins
Rather than Subqueries

Chapter 7: Getting and Analyzing Metadata

Item 44:
Item 45:
Item 46:

Learn to Use Your System’s Query Analyzer
Learn to Get Metadata about Your Database
Understand How the Execution Plan Works

Chapter 8: Cartesian Products

Item 47:

[tem 48:

Item 49:

Item 50:

Produce Combinations of Rows between Two
Tables and Flag Rows in the Second That
Indirectly Relate to the First

Understand How to Rank Rows by Equal
Quantiles

Know How to Pair Rows in a Table with All
Other Rows

Understand How to List Categories and the
Count of First, Second, or Third Preferences

Ha

145

150

156

159
163
166

169
172

179
179

184

190

197

201
201
212
217

227

227

231

235

240

xvi Hx

Chapter 9: Tally Tables

Item 51:

Item 52:

Item 53:

Item 54:

Item 55:
Item 56:

Item 57:

Chapter

Item 58:

Item 59:

Item 60:

Item 61:

Use a Tally Table to Generate Null Rows Based
on a Parameter

Use a Tally Table and Window Functions for
Sequencing

Generate Multiple Rows Based on Range
Values in a Tally Table

Convert a Value in One Table Based on a
Range of Values in a Tally Table

Use a Date Table to Simplify Date Calculation

Create an Appointment Calendar Table with
All Dates Enumerated in a Range

Pivot Data Using a Tally Table

10: Modeling Hierarchical Data

Use an Adjacency List Model as the Starting
Point

Use Nested Sets for Fast Querying Performance
with Infrequent Updates

Use a Materialized Path for Simple Setup and
Limited Searching

Use Ancestry Traversal Closure for Complex
Searching

Appendix: Date and Time Types, Operations,

and Functions

IBM DB2
Microsoft Access
Microsoft SQL Server

MySQL
Oracle

PostgreSQL

Index

247

247

252

257

261
268

275
278

285

286

288

291

294

299
299
303
305
308
313
315

317

Introduction

Structured Query Language, or SQL, is the standard language for
communicating with most database systems. We assume that because
you are looking at this book, you have a need to get information from
a database system that uses SQL.

This book is targeted at the application developers and junior data-
base administrators (DBAs) who regularly work with SQL as part of
their jobs. We assume that you are already familiar with the basic
SQL syntax and focus on providing useful tips to get the most out of
the SQL language. We have found that the mindset required is quite
different from what works for computer programming as we move
away from a procedural-based approach to solving problems toward a
set-based approach.

A relational database management system (RDBMS) is a software
application program you use to create, maintain, modify, and manip-
ulate a relational database. Many RDBMS programs also provide
the tools you need to create end-user applications that interact with
the data stored in the database. RDBMS programs have continually
evolved since their first appearance, and they are becoming more
full-featured and powerful as advances occur in hardware technology
and operating environments.

A Brief History of SQL

Dr. Edgar F. Codd (1923-2003), an IBM research scientist, first con-
ceived the relational database model in 1969. He was looking into new
ways to handle large amounts of data in the late 1960s and began
thinking of how to apply mathematical principles to solve the myriad
problems he had been encountering.

After Dr. Codd presented the relational database model to the world
in 1970, organizations such as universities and research laboratories

2 Introduction

began efforts to develop a language that could be used as the foun-
dation of a database system that supported the relational model. Ini-
tial work led to the development of several different languages in the
early to mid-1970s. One such effort occurred at IBM’s Santa Teresa
Research Laboratory in San Jose, California.

IBM began a major research project in the early 1970s called System/R,
intending to prove the viability of the relational model and to gain
some experience in designing and implementing a relational data-
base. Their initial endeavors between 1974 and 1975 proved success-
ful, and they managed to produce a minimal prototype of a relational
database.

At the same time they were working on developing a relational data-
base, researchers were also working to define a database language. In
1974, Dr. Donald Chamberlin and his colleagues developed Structured
English Query Language (SEQUEL), which allowed users to query a
relational database using clearly defined English-style sentences. The
initial success of their prototype database, SEQUEL-XRM, encour-
aged Dr. Chamberlin and his staff to continue their research. They
revised SEQUEL into SEQUEL/2 between 1976 and 1977, but they
had to change the name SEQUEL to SQL (Structured Query Language
or SQL Query Language) for legal reasons—someone else had already
used the acronym SEQUEL. To this day, many people still pronounce
SQL as “sequel,” although the widely accepted “official” pronunciation
is “ess-cue-el.”

Although IBM’s System/R and SQL proved that relational databases
were feasible, hardware technology at the time was not sufficiently
powerful to make the product appealing to businesses.

In 1977 a group of engineers in Menlo Park, California, formed Rela-
tional Software, Inc., for the purpose of building a new relational
database product based on SQL that they called Oracle. Relational
Software shipped its product in 1979, providing the first commer-
cially available RDBMS. One of Oracle’s advantages was that it ran
on Digital's VAX minicomputers instead of the more expensive IBM
mainframes. Relational Software has since been renamed Oracle Cor-
poration and is one of the leading vendors of RDBMS software.

At roughly the same time, Michael Stonebraker, Eugene Wong, and
several other professors at the University of California’s Berkeley com-
puter laboratories were also researching relational database technol-
ogy. They developed a prototype relational database that they named
Ingres. Ingres included a database language called Query Language
(QUEL), which was much more structured than SQL but made less
use of English-like statements. However, it became clear that SQL was

A Brief History of SQL 3

emerging as the standard database language, so Ingres was eventually
converted to an SQL-based RDBMS. Several professors left Berkeley in
1980 to form Relational Technology, Inc., and in 1981 they announced
the first commercial version of Ingres. Relational Technology has gone
through several transformations. Formerly owned by Computer Associ-
ates International, Inc., and now part of Actian, Ingres is still one of the
leading database products in the industry today.

Meanwhile, IBM announced its own RDBMS called SQL/Data Sys-
tem (SQL/DS) in 1981 and began shipping it in 1982. In 1983, the
company introduced a new RDBMS product called Database 2 (DB2),
which could be used on IBM mainframes using IBM’s mainstream
MVS operating system. First shipped in 1985, DB2 has become IBM’s
premier RDBMS, and its technology has been incorporated into the
entire IBM product line.

With the flurry of activity surrounding the development of database
languages, the idea of standardization was tossed about within the
database community. However, no consensus or agreement as to who
should set the standard or which dialect it should be based upon was
ever reached, so each vendor continued to develop and improve its
own database product in the hope that it—and, by extension, its dia-
lect of SQL—would become the industry standard.

Customer feedback and demand drove many vendors to include cer-
tain elements in their SQL dialects, and in time an unofficial stan-
dard emerged. It was a small specification by today’s standards, as it
encompassed only those elements that were similar across the vari-
ous SQL dialects. However, this specification (such as it was) did pro-
vide database customers with a core set of criteria by which to judge
the various database programs on the market, and it also gave users
knowledge that they could leverage from one database program to
another.

In 1982, the American National Standards Institute (ANSI) responded
to the growing need for an official relational database language stan-
dard by commissioning its X3 organization’s database technical com-
mittee, X3H2, to develop a proposal for such a standard. After much
effort (which included many improvements to SQL), the committee
realized that its new standard had become incompatible with exist-
ing major SQL dialects, and the changes made to SQL did not improve
it significantly enough to warrant the incompatibilities. As a result,
they reverted to what was really just a minimal set of “least common
denominator” requirements to which database vendors could conform.

ANSI ratified this standard, "ANSI X3.135-1986 Database Language
SQL,” which became commonly known as SQL/86, in 1986. In essence,

4 Introduction

it conferred official status on the elements that were similar among
the various SQL dialects and that many database vendors had already
implemented. Although the committee was aware of its shortcomings,
at least the new standard provided a specific foundation from which
the language and its implementations could be developed further.

The International Organization for Standardization (ISO) approved its
own document (which corresponded exactly with ANSI SQL/86) as an
international standard in 1987 and published it as “ISO 9075:1987
Database Language SQL.” (Both standards are still often referred to
as just SQL/86.) The international database vendor community could
now work from the same standards as vendors in the United States.
Despite the fact that SQL gained the status of an official standard,
the language was far from being complete.

SQL/86 was soon criticized in public reviews, by the government, and
by industry pundits such as C. J. Date for problems such as redun-
dancy within the SQL syntax (there were several ways to define the
same query), lack of support for certain relational operators, and lack
of referential integrity.

Both ISO and ANSI adopted refined versions of their standards in
an attempt to address the criticisms, especially with respect to refer-
ential integrity. ISO published “ISO 9075: 1989 Database Language
SQL with Integrity Enhancement” in mid-1989, and ANSI adopted its
“X3.135-1989 Database Language SQL with Integrity Enhancement,”
also often referred to as SQL/89, late that same year.

It was generally recognized that SQL/86 and SQL/89 lacked some of
the most fundamental features needed for a successful database sys-
tem. For example, neither standard specified how to make changes
to the database structure once it was defined. It was not possible to
modify or delete any structural component, or to make changes to the
security of the database, despite the fact that all vendors provided
ways to do this in their commercial products. (For example, you could
CREATE a database object, but no ALTER or DROP syntax was defined.)

Not wanting to provide yet another “least common denominator” stan-
dard, both ANSI and ISO continued working on major revisions to
SQL that would make it a complete and robust language. The new
version (SQL/92) would include features that most major database
vendors had already widely implemented, but it also included features
that had not yet gained wide acceptance, as well as new features that
were substantially beyond those currently implemented.

ANSI and ISO published their new SQL Standards—*X3.135-1992
Database Language SQL" and “ISO/IEC 9075:1992 Database Language

