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Introduction

Structured Query Language, or SQL, is the standard language for
communicating with most database systems. We assume that because
you are looking at this book, you have a need to get information from
a database system that uses SQL.

This book is targeted at the application developers and junior data-
base administrators (DBAs) who regularly work with SQL as part of
their jobs. We assume that you are already familiar with the basic
SQL syntax and focus on providing useful tips to get the most out of
the SQL language. We have found that the mindset required is quite
different from what works for computer programming as we move
away from a procedural-based approach to solving problems toward a
set-based approach.

A relational database management system (RDBMS) is a software
application program you use to create, maintain, modify, and manip-
ulate a relational database. Many RDBMS programs also provide
the tools you need to create end-user applications that interact with
the data stored in the database. RDBMS programs have continually
evolved since their first appearance, and they are becoming more
full-featured and powerful as advances occur in hardware technology
and operating environments.

A Brief History of SQL

Dr. Edgar F. Codd (1923-2003), an IBM research scientist, first con-
ceived the relational database model in 1969. He was looking into new
ways to handle large amounts of data in the late 1960s and began
thinking of how to apply mathematical principles to solve the myriad
problems he had been encountering.

After Dr. Codd presented the relational database model to the world
in 1970, organizations such as universities and research laboratories
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began efforts to develop a language that could be used as the foun-
dation of a database system that supported the relational model. Ini-
tial work led to the development of several different languages in the
early to mid-1970s. One such effort occurred at IBM’s Santa Teresa
Research Laboratory in San Jose, California.

IBM began a major research project in the early 1970s called System/R,
intending to prove the viability of the relational model and to gain
some experience in designing and implementing a relational data-
base. Their initial endeavors between 1974 and 1975 proved success-
ful, and they managed to produce a minimal prototype of a relational
database.

At the same time they were working on developing a relational data-
base, researchers were also working to define a database language. In
1974, Dr. Donald Chamberlin and his colleagues developed Structured
English Query Language (SEQUEL), which allowed users to query a
relational database using clearly defined English-style sentences. The
initial success of their prototype database, SEQUEL-XRM, encour-
aged Dr. Chamberlin and his staff to continue their research. They
revised SEQUEL into SEQUEL/2 between 1976 and 1977, but they
had to change the name SEQUEL to SQL (Structured Query Language
or SQL Query Language) for legal reasons—someone else had already
used the acronym SEQUEL. To this day, many people still pronounce
SQL as “sequel,” although the widely accepted “official” pronunciation
is “ess-cue-el.”

Although IBM’s System/R and SQL proved that relational databases
were feasible, hardware technology at the time was not sufficiently
powerful to make the product appealing to businesses.

In 1977 a group of engineers in Menlo Park, California, formed Rela-
tional Software, Inc., for the purpose of building a new relational
database product based on SQL that they called Oracle. Relational
Software shipped its product in 1979, providing the first commer-
cially available RDBMS. One of Oracle’s advantages was that it ran
on Digital's VAX minicomputers instead of the more expensive IBM
mainframes. Relational Software has since been renamed Oracle Cor-
poration and is one of the leading vendors of RDBMS software.

At roughly the same time, Michael Stonebraker, Eugene Wong, and
several other professors at the University of California’s Berkeley com-
puter laboratories were also researching relational database technol-
ogy. They developed a prototype relational database that they named
Ingres. Ingres included a database language called Query Language
(QUEL), which was much more structured than SQL but made less
use of English-like statements. However, it became clear that SQL was
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emerging as the standard database language, so Ingres was eventually
converted to an SQL-based RDBMS. Several professors left Berkeley in
1980 to form Relational Technology, Inc., and in 1981 they announced
the first commercial version of Ingres. Relational Technology has gone
through several transformations. Formerly owned by Computer Associ-
ates International, Inc., and now part of Actian, Ingres is still one of the
leading database products in the industry today.

Meanwhile, IBM announced its own RDBMS called SQL/Data Sys-
tem (SQL/DS) in 1981 and began shipping it in 1982. In 1983, the
company introduced a new RDBMS product called Database 2 (DB2),
which could be used on IBM mainframes using IBM’s mainstream
MVS operating system. First shipped in 1985, DB2 has become IBM’s
premier RDBMS, and its technology has been incorporated into the
entire IBM product line.

With the flurry of activity surrounding the development of database
languages, the idea of standardization was tossed about within the
database community. However, no consensus or agreement as to who
should set the standard or which dialect it should be based upon was
ever reached, so each vendor continued to develop and improve its
own database product in the hope that it—and, by extension, its dia-
lect of SQL—would become the industry standard.

Customer feedback and demand drove many vendors to include cer-
tain elements in their SQL dialects, and in time an unofficial stan-
dard emerged. It was a small specification by today’s standards, as it
encompassed only those elements that were similar across the vari-
ous SQL dialects. However, this specification (such as it was) did pro-
vide database customers with a core set of criteria by which to judge
the various database programs on the market, and it also gave users
knowledge that they could leverage from one database program to
another.

In 1982, the American National Standards Institute (ANSI) responded
to the growing need for an official relational database language stan-
dard by commissioning its X3 organization’s database technical com-
mittee, X3H2, to develop a proposal for such a standard. After much
effort (which included many improvements to SQL), the committee
realized that its new standard had become incompatible with exist-
ing major SQL dialects, and the changes made to SQL did not improve
it significantly enough to warrant the incompatibilities. As a result,
they reverted to what was really just a minimal set of “least common
denominator” requirements to which database vendors could conform.

ANSI ratified this standard, "ANSI X3.135-1986 Database Language
SQL,” which became commonly known as SQL/86, in 1986. In essence,



4 Introduction

it conferred official status on the elements that were similar among
the various SQL dialects and that many database vendors had already
implemented. Although the committee was aware of its shortcomings,
at least the new standard provided a specific foundation from which
the language and its implementations could be developed further.

The International Organization for Standardization (ISO) approved its
own document (which corresponded exactly with ANSI SQL/86) as an
international standard in 1987 and published it as “ISO 9075:1987
Database Language SQL.” (Both standards are still often referred to
as just SQL/86.) The international database vendor community could
now work from the same standards as vendors in the United States.
Despite the fact that SQL gained the status of an official standard,
the language was far from being complete.

SQL/86 was soon criticized in public reviews, by the government, and
by industry pundits such as C. J. Date for problems such as redun-
dancy within the SQL syntax (there were several ways to define the
same query), lack of support for certain relational operators, and lack
of referential integrity.

Both ISO and ANSI adopted refined versions of their standards in
an attempt to address the criticisms, especially with respect to refer-
ential integrity. ISO published “ISO 9075: 1989 Database Language
SQL with Integrity Enhancement” in mid-1989, and ANSI adopted its
“X3.135-1989 Database Language SQL with Integrity Enhancement,”
also often referred to as SQL/89, late that same year.

It was generally recognized that SQL/86 and SQL/89 lacked some of
the most fundamental features needed for a successful database sys-
tem. For example, neither standard specified how to make changes
to the database structure once it was defined. It was not possible to
modify or delete any structural component, or to make changes to the
security of the database, despite the fact that all vendors provided
ways to do this in their commercial products. (For example, you could
CREATE a database object, but no ALTER or DROP syntax was defined.)

Not wanting to provide yet another “least common denominator” stan-
dard, both ANSI and ISO continued working on major revisions to
SQL that would make it a complete and robust language. The new
version (SQL/92) would include features that most major database
vendors had already widely implemented, but it also included features
that had not yet gained wide acceptance, as well as new features that
were substantially beyond those currently implemented.

ANSI and ISO published their new SQL Standards—*X3.135-1992
Database Language SQL" and “ISO/IEC 9075:1992 Database Language



