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Preface

A science as vitally important as functional analysis can foriunately not be
defined. But its great ‘Leitmotiv’ can nevertheless be indicated : It is the fusion of
algebraic and topological structures. This seemingly abstract and anacmic
subject has developed in such a rich and lively manner that nowadays functional
analysis has a strong influence on a great number of completely different fields
inside and outside of mathematics: systems engineers and atormic physicists
cannot do without it, just like mathematicians working in numerical analysis,
differential or integral equations, the theory of approximation or representation
theory—just to name a few.

The purpose of this book is to give a lively and thorough exposition of the
basic concepts. the essential statements, the main methods and tinally also of
the way of thinking of functional analysis and to satisfy the nceds of a large
circle of users, in content as well as didactically.

To achieve this purpose T chose an orientation toward problems. The present
book starts out, whencver possible, from questions and facts of classicul
analysis and algebra, and tries to get to thewr core by leaving aside what is
accidental in order to obtain general concept+ and assertions. Conversely, it aims
at making the newly acquired tools fruitful for the classical fields. Naturally in
the course of this process so many questions of a ‘purely functional analytic
nature’ accumulate that finally functional analysis is propelled by its own
problems. But the main text and the exercises return constantly to the familiar
world of analysis and algebra. I hope to enhancc in this way the motivation and
the intuitive understanding of the reader and to save him ltom thal particular
feeling of being lost, which occurs so casily and annoyingly when studying an
abstract theory. | think that in this way I also acquit myself best of the duty
imposed on an author by the word ‘Leitfaden™, i.e., leading thread. The first
leading thrcad was that of Ariadne; Plutarch repor s about it in his biography
of Thescus the following?®: ©. . . after he (Theseus) arrived in Creta. he slew the

' The origimal Gennan editon was published in the “Mathematis he Lentaden senes of B (.
Teubner.

“Plutarch. The Lives of the Noble Grecians and Romans, translated by Tiomas North. the None-
such Press. London. 1929,
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Minotaur . . . by the means and help of Ariadne, who being fallen in fancy with
him, did give him a clue of thread, by the help whereof she taught him how he
might easily wind out of the turnings and cranks of the Labyrinth’.

An organization directed towards problems does not try to represent a
science as it evolved —this is the purpose of the genetic method—but how it
could also have evolved. It is the coming together of fortunate circumstances—
maybe even more—that one of the foundations of this book, the concept of a
bilinear system, already is tacitly the basis of the pioneering works of Fredholm
concerning integral equations, which started functional analysis. The problem
of the solvability of Fredholm’s integral equations will therefore play a central
role in this book. It leads us through the Neumann series to the theory of Banach
algebras and through the concept of a bilinear system and of normal solvability
to the extension principle of Hahn-Banach and to the duality theory which
follows from it, a crown jewel of functional analysis. It should be observed
emphatically that the investigation of Fredholm’s integral equation originates
from a very conerete situation: many boundary value problems of physics and
of technology can be transformed into an equation of this kind.

The table of contents gives detailed information about the subjects treatéd and
their interdependence. T want to indicate here only a few major blocks. The first
seven chapters are dominated by the problem of equations: under what con-
ditions are equations in general spaces solvable, how can they be effectively
solved, and how do the solutions depend on certain initial data? Mainly linear
problems will be considered; the non-linear domain will be represented by the
fixed-point theorems of Banach and Schauder; the latter occur, however, first
only in §106. In Chapter V11 approximation problems will arise. The great
subject of orthogonality will emerge here, and will be developed in the fellowing
two chapters (orthogonal decomposition and spectral theory in Hilbert spaces).
Chapter XI to XIII reach the summit of the progress towards abstraction: they
show how linear and topological structures are fusioned in the concept of a
topological vector space. This fusion leads. if the structures are rich enough,
back to a quite concrete situation: commutative, complex B*-algebras are
nothing else but algebras of continuous functions. With this theorem of Gelfand
and Neumark the book concludes.

The monumental work of Dunford and Schwartz ‘Linear Operators’ has
2592 pages: the theory of topological vector spaces is only touched in it. It is
necdless to say that my book had to sacrifice many important or only attractive
subjects. I did not want to sacrifice, however, a copious motivation, an illustra-
tion from several angles of the central facts, and the details of the proofs.

For long stretches only the elements of analysis and linear algebra are required
as prerequisites. The concept of a metric space and its continuous maps will be
developed in the book. 1listed in §81 and §101 without proofs the few topological
facts which will be needed from §82 on. The spectral theory in Chapter VII
cannol be studied profitably without some knowledge of the theory of analytic
functions of a complex variable: one needs Cauchy’s integral theorem, Liou-
ville’s theorem, the Taylor and the Laurent expansions. At a few places theorems
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from real and complex analysis will be used which might not be familiar to
every reader (e.g., the Stone-Weierstrass theorem); in these cases 1 have
mdicated references to the literature, where the proofs can easily be read. The
Lebesgue integral and the theory of partial differential equations will not be
used. - ’

I have to thank cordially the Universidad de los Andes in Bogota (Colombia)
and the University of Toronto in Toronto (Canada): they gave me through
visiting positions the possibility to work intensively on this book. Mrs. Mia
Miinzel put her home, which lies quietly above Lake Garda, at my disposition
for the last chapters; [ am deeply indebted to her. My special thanks go to Dr.
H. Kroh, Dr. U. Mertins and Mr. G. Schneider, further to Mrs. Y. Paasche
and Mrs. K. Zeder. The three gentlemen were at my side during the preparation
of this book with advice and help, they improved it and cleaned it up through
valuable indications, and read all the proofs; the two ladies transformed with
unbelievable patience a miserable manuscript into a clean typescripi. I thank
the Teubner—Verlag cordially for the pleasant collaboration and for its watchful
help and assistance.

Nastditten in Taunus, August 1975 HarrO HEUSER
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Introduction

In this section some notation and facts will be listed, which are of fundamental
importance for everything that follows.

General notation

N, R, C denote the set of natural, real and complex numbers, respectively. K
stands for either the field R or the field C; elements of K are also called scalars
and they will usually be denoted by lower case Greek characters. Re « and Im «
denote the real and the imaginary part of «, respectively. a is the conjugate of the
complex number a. We denote by |x,,| the determinant of the #n by n matrix
(,,): there is no risk of confusion with the absolute value of the number a,,. In
equations which are definitions we use the symbols =" or ‘=", where the colon
stands on the side of the symbol which is to be defined.

Examples: 1. [(x):=x?; 2. {1,2,3} =:M: 3. Kronecker'ssymbol

5 e 1 for i=k
7o for 1 # k.

A = B means that from statement A the statement B follows; 4 <= B says that
the statements 4 and B are equivalent (each follows from the other). The end of a
proof is usually marked by @.

Sets

@ is the empty set. A = B means that 4 is a subset of B (where A = B is
permitted). For the formation of unions and intersections the signs «w and n will
be used, respectively. The difference set E* M is the set of all elements of E which
do not belong to A ; if M is a subset of E then £ M is also called the complement
of M i E.

If the set M consists of all elements of a set E which possess a certain property
P, we write M = {x e E: x possesses property P}. Examples (where at the same

] -
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time certain symbols are defined): [«, f]:={SeR: 2 = ¢ < fi} is the closed,
(o, B) = {¢eR: o < & < B} is the open interval of the real line with endpoints

a, B.

Maps

Let E, F be nonempty sets. A map f from E into F associates with each x € E
one and only one element y € F, which is also denoted f(x) and is called the
image of x (with respect to f). E is the set of definition, F the target set of f. In
order to exhibit clearly the three components of a map (rule of correspondence f,
set of definition E, target set F), we write

. {E—>F
f:E—>F or f'{xv—»f(.\')

(x+ f(x) means that with the element x one associates the image f(x)). The
notation f: x+ f(x) or even simpler x> f(x) is also used; then the set of
definition and the target set must be given separately. if they are not evident. At
times it will be handy—and harmless— to infringe on these notational conven-
tions. Thus, for instance, we shall speak of the function sin x (instead of x
sin x), of the polynomial x? (instcad of x +— x?). and of the kernel k(s, t) (instead
of (s, t) — k(s, t)) of an integral equation. A self-map of E is a map from E into E.
The identity map i of E is the map x + x (x € E).

Twomapsf,:E, —» Fy, f,: E;, = F, are said to be equal it E, = E,,F, = F,
and f,(x) = fy(x)forall xe E,.

Let f: E —» Fbegiven. For4A < E,B < Ftheset f(A):={f(x)cF:xeA}is
the image of A, f ~'(B) == {x € E: f(x)€ B} is the preimuge of B. | is said to be
surjective if f(E) = F, injective if f(x) = {(y) implies x = v, and bijecrive if it is
both surjective and injective. The locution *f maps E onto F' mcans that [ is
surjective. A family (a,: 1€J) is only another name and writing (or the map
1— a, from a set J of indices into a set A. When J = N one rather speaks of a
sequence than of a family.

A sequencea,, a,, ...ofelements of A will bedenoted briefly by (.1,) er(a,) < 4
and occasionally also by (a4, a, . . .).

The word function (and also functional) will in general be used only for maps
from a set E into the field of scalars K (scalar-valued or K-valued maps).

If the maps f: E —» F, g: F — G are given (observe that the target set of f is
the set of definition of g), then their composition (product) is the m.p g = / from
E into G which associates with each x € E the image (g > f)(x):=g( f(x))in G.
For a self-map f of E, the iterates (powers) " are defined by =i, f":=
feofm i n=12..). :

Every injective map f: E — F has an inverse map

£t J(E)— E
T fx) e x

Onehas f~'c f=ig,fof ''=ipg.
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f: E = Fis then and only then bijective, if there exist mapsg: F - E,h: F - E
withge f = ig, foh=ip. Inthiscaseg=h= "

The following rules will be used frequently for the study of maps f: E - F
(let A, A, be subsets of E, while B, B, are subsets of F; f ~'(B) is the above defined
preimage, where f is not assumed to be injective):

A, € Ay = f(A,) € f(Ay);

) f(ﬂ A.) < ) f(A), f(U A.) = f(A):
1el 1eJ 1eJ 1eJ

B, = B, =>f_l(31) < f_l(Bz)Q

) -f;‘(U B.) =y e f‘_‘(ﬂ B.) =) /7B

1€J 1eJ 1eJ 1edJ
STUF\B) = E\f™'(B);
f~Nf(A)) > A; [ injective <> £ ~1(f(A)) = A for every A < E:

f(f~Y(B)) = B; f surjective <> f(f ~'(B)) = B for every B < F.
If the map g: F — G is also given, then

(9= f)"HC) = g~ '(O))

forevery C < G.
* The cartesian product of a family (E,; 1 € J) of non-empty sets E, is the set of all
families (x, € E,: 1€ J), i.e,, the set of all maps 1+ x, € E, defined on J. It will be
_denoted [],., E,, and in the case of a finite or countable index set also by
E, x--- x E,or E; x E; x ..., respectively. E; x --- x E, is the set of all
n-tuples (xy, ..., X,), x, € E; for k = 1,...,n, while E; x E, x ... is the col-
lection of all sequences (x,, x,, ...) with x, € E, for k € N. There is no risk of
confu-ing a couple (x,, x,) € E, x E, with an open interval.
Foragivenx := (x,: 1€J)€[],., E, theelement x, is called the component of x
in E,; the maps x,: (x,: 1 €J) > x, are called the projections or projectors onto
the components.

Rules of complementation

Let (A,: 1€ J) be a family of subsets of E and M' := E\ M the complement of
M < E in E. Then

(Ya)=na () -ye
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Zorn's lemma

For certain pairs x, y of elements of a set M # F let a relation ‘x < y’ be
defined, which satisfies the following axioms:

1. x < x for every x e M.
2. Ifx<yandy<x thenx = y.
3. Ifx<yandy<zthenx<z

Such a relation is called an order on 9 and M itself is said to be an ordered set.
Ar. order is called total, and M a totally ordered set, if two elements x, y of M are
always comparable,i.e. if either x < yory < x holds. Every subset of 9t becomes
through the order on 9 an ordered, possibly even a totally ordered set. y € M is
called an upper bound for 9t = M if x < y for every x e M. ze M is a maximal
element if z < x holds only for x = z. Zorn’s lemma is as follows:

Ifevery totally ordered subset of an ordered set M has an upper bound in 9, then
there exists in M at least one maximal element.

Inequalities

The quantities oy, B, f(x), g(x) which occur in what follows are complex
numbers. The sums are finite or infinite; in the latter.case it will be supposed that
every series, which is on the right hand side of an inequality, converges. In the
integral inequalities it is enough to assume for our purposes that the integrands
are continuous functions on a finite interval of the real line. Proofs can be found
in [1807.

Hélder's inequalities: I p > 1 and 1/p + 1/q = 1, then

2l Bl = (o) PG | Bel) ',

b b i/p b 1/g
[uummmg<ﬁﬂmwﬁ Ummmﬂ :

for p = g = 2 one obtains the
Cauchy-Schwarz inequalities:

Yl < Q1o 1B D2,

L h| Sx)g(x)]dx < (fl Jeof? dX/)l,z(fIg(X)I’ d—*)“z-

Minkowski’s inequalities: For p = 1 one has

Ol + Bd'? < Gl + QBN

b 1,p b 1/ip b 1/p
ONﬂn+mﬂWM) (ﬁﬂﬂVM) +(hmnww).

FFor p > 1 equality holds in the Minkowski inequalities if and only if one of the
sequences (2), (f) or one of the functions f, g is a non-negative multiple of the
other.

A



Labeling of resuits, references

To indicate the significance of the results, we use the hierarchy ‘Lemma,
Proposition, Theorem, Principle’. The statements within each class will be
numbered consecutively in each section, thus Lemma 27.1 is the first lemma in
§27, Proposition 27.1 the first proposition in §27, and Theorem 27.1 the first
theorem in §27. The examples are numbered correspondingly. The exercises gre
at the end of each section; cross-references like ‘§16 Exercise 6’ or ‘Exercise 6 in
§16" need no explanation. The sections (paragraphs) are numbered consecutively
(§1 to §110). Square brackets refer'to the bibliography. For the easier orientation
of the reader it is divided into several sections, which are of course not completely
independent of each other. We call the reader’s attention especially to the section
‘expository articles’; in them he will be made familiar easily and thoroughly with
historical development, the essential probiems, the fundamental notions and
methods of certain fields of functional analysis; most of these articles also contain
a very detailed bibliography.

Exercises

The exercises form an essential part of this book. They serve to get practice in
the knowledge and methods of the main text (and give thereby also an op-
portunity for the reader to check whether he has understood it), they prepare for
subsequent developments and communicate further interesting facts from
functional analysis. Some exercises will be needed in the course of the main text,
they are marked with a star in front of their number (e.g., *5). The reader is
earnestly urged to work the exercises, the starred ones as well as the unstarred
ones; the very hasty user of this book should at least glance through them.
Those unstarred exercises which contain particularly interesting facts from
functional analysis, which are not treated in the main text, are indicated by a plus
sign in front of the number (e.g., "2).

Guide

Basic are Chapters I-III and sections 28, 31-33. The following division ac-
cording to subjects does not contain them any more. The division is to be under-
stood only as an orientation; it does not show the existing logical interdepen-
dence:

(A) Geometry of spaces:

1. Normed spaces: Chapter VIII (§41 must be read before §61)
2. Inner product spaces: §§57-59, Chapter IX
3. Topological vector spaces: Chapters XI-XIII

(B) Banach algebras: §§44-48, Chapter XIV

(C) Operators on normed spaces: §§29, 36, 41, 44-50, 53, 54, 97

(D) Operators on inner product spaces: §67, Chapter IX

(E) Fredholm operators: Chapter 1V, §§37, 39, 51, 89

(F) Compact and Riesz operators: §30, Chapter VI, §52, 72, 75.
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Banach’s fixed
point theorem

§1. Metric spaces

One of the basic concepts of classical analysis is the concept of convergence of a
sequence of numbers. This in turn is based on the concept of distance: in fact the
convergence of the sequence (x,) to x means that the distance | x, — x| of the k-th
term x, from the limit x will be arbitrarily small when k increases beyond all bounds.
A corresponding definition is given for sequences of elements of K", where the

distance d(x, y) between x = (¢y,...,¢,) and y = (34, ..., n,) is for instance
defined by
‘ n 1/)"
(IH d(X,Y)’=(Z|§v-’1v|2) g
v=1

If one wants to build a theory of convergence, which is valid for sequences of
numbers as well as for sequences of vectors, and which eventually disregards
completely the nature of the terms of the sequences, then one cannot use de-
finitions of a distance like (1.1) (which make sense only for concretely given
objecfs), but rather one will have to work with some properties, which intuitively
every reasonable concept of distance must have. Such properties are for instance
the following, where we call ‘points’ the objects between which the distances are
defined: The distance of a point from itself and only from itself is 0, the distance
of a point x from a point y is exactly as large as conversely the distance of the
point y from the point x (symmetry property of distance), and finally a ‘deviation
property’: If one does not go from the point x directly to the point y but first to
the point z and then from there to x, then one has not made a shortcut, possibly
one covered a larger distance. We need now only to express these properties
precisely in the language of mathematical formulas to obtain the fundamental
concepts of a metric and of a metric space:

6



