IEEE Press Series on Systems Science and Engineering
MengChu Zhou, Series Editor

Robust Adaptive
Dynamic
Programming

Yu Jiang ® Zhong-Ping Jiang

LYy >

IEEE PRESS WILEY



ROBUST ADAPTIVE DYNAMIC
PROGRAMMING

YU JIANG
The MathWorks, Inc.

ZHONG-PING JIANG
New York University

ystems, Man,
& Cybemetics

society

wil Jh-
IEEE PRESS

WILEY



Copyright © 2017 by The Institute of Electrical and Electronics Engineers, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher nor
author shall be liable for any loss of profit or any other commercial damages, including but not limited to
special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at (317)
572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic formats. For more information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data is available.

ISBN: 978-1-119-13264-6

Printed in the United States of America.

1079 ' 8-76:5 43 2 1




' ROBUST ADAPTIVE DYNAMIC
' PROGRAMMING



IEEE Press
445 Hoes Lane
Piscataway, NJ 08854

IEEE Press Editorial Board
Tariq Samad, Editor in Chief
Giancarlo Fortino Xiaoou Li Ray Perez
Dmitry Goldgof Andreas Molisch Linda Shafer
Don Heirman Saeid Nahavandi Mohammad Shahidehpour

Ekram Hossain Jeffrey Nanzer Zidong Wang




To my mother, Misi, and Xiaofeng
—Yu Jiang

To my family
—Zhong-Ping Jiang




L
%

ABOUT THE AUTHORS

Yu Jiang is a Software Engineer with the Control Systems Toolbox Team at The
MathWorks, Inc. He received a B.Sc. degree in Applied Mathematics from Sun
Yat-sen University, Guangzhou, China, a M.Sc. degree in Automation Science and
Engineering from South China University of Technology, Guangzhou, China, and
a Ph.D. degree in Electrical Engineering from New York University. His research
interests include adaptive dynamic programming and other numerical methods in
control and optimization. He was the recipient of the Shimemura Young Author Prize
(with Prof. Z.P. Jiang) at the 9th Asian Control Conference in Istanbul, Turkey, 2013.

Zhong-Ping Jiang is a Professor of Electrical and Computer Engineering at the Tan-
don School of Engineering, New York University. His main research interests include
stability theory, robust/adaptive/distributed nonlinear control, adaptive dynamic pro-
gramming and their applications to information, mechanical and biological systems.
In these areas, he has written 3 books, 14 book chapters and is the (co-)author of over
182 journal papers and numerous conference papers. His work has received 15,800
citations with an h-index of 63 according to Google Scholar. Professor Jiang is a
Deputy co-Editor-in-Chief of the Journal of Control and Decision, a Senior Editor
for the IEEE Transactions on Control Systems Letters, and has served as an editor, a
guest editor and an associate editor for several journals in Systems and Control. Prof.
Jiang is a Fellow of the IEEE and a Fellow of the IFAC.




PREFACE AND ACKNOWLEDGMENTS

This book covers the topic of adaptive optimal control (AOC) for continuous-time
systems. An adaptive optimal controller can gradually modify itself to adapt to the
controlled system, and the adaptation is measured by some performance index of
the closed-loop system. The study of AOC can be traced back to the 1970s, when
researchers at the Los Alamos Scientific Laboratory (LASL) started to investigate
the use of adaptive and optimal control techniques in buildings with solar-based
temperature control. Compared with conventional adaptive control, AOC has the
important ability to improve energy conservation and system performance. However,
even though there are various ways in AOC to compute the optimal controller, most
of the previously known approaches are model-based, in the sense that a model
with a fixed structure is assumed before designing the controller. In addition, these
approaches do not generalize to nonlinear models.

On the other hand, quite a few model-free, data-driven approaches for AOC have
emerged in recent years. In particular, adaptive/approximate dynamic programming
(ADP) is a powerful methodology that integrates the idea of reinforcement learning
(RL) observed from mammalian brain with decision theory so that controllers for
man-made systems can learn to achieve optimal performance in spite of uncertainty
about the environment and the lack of detailed system models. Since the 1960s, RL
has been brought to the computer science and control science literature as a way
to study artificial intelligence, and has been successfully applied to many discrete-
time systems, or Markov Decision Processes (MDPs). However, it has always been
challenging to generalize those results to the controller design of physical systems.
This is mainly because the state space of a physical control system is generally
continuous and unbounded, and the states are continuous in time. Therefore, the
convergence and the stability properties have to be carefully studied for ADP-based
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xiv PREFACE AND ACKNOWLEDGMENTS

approaches. The main purpose of this book is to introduce the recently developed
framework, known as robust adaptive dynamic programming (RADP), for data-
driven, non-model based adaptive optimal control design for both linear and nonlinear
continuous-time systems.

In addition, this book is intended to address in a systematic way the presence of
dynamic uncertainty. Dynamic uncertainty exists ubiquitously in control engineering.
It is primarily caused by the dynamics which are part of the physical system but are
either difficult to be mathematically modeled or ignored for the sake of controller
design and system analysis. Without addressing the dynamic uncertainty, controller
designs based on the simplified model will most likely fail when applied to the
physical system. In most of the previously developed ADP or other RL methods,
it is assumed that the full-state information is always available, and therefore the
system order must be known. Although this assumption excludes the existence of
any dynamic uncertainty, it is apparently too strong to be realistic. For a physical
model on a relatively large scale, knowing the exact number of state variables can
be difficult, not to mention that not all state variables can be measured precisely.
For example, consider a power grid with a main generator controlled by the utility
company and small distributed generators (DGs) installed by customers. The utility
company should not neglect the dynamics of the DGs, but should treat them as
dynamic uncertainties when controlling the grid, such that stability, performance,
and power security can be always maintained as expected.

The book is organized in four parts. First, an overview of RL, ADP, and RADP
is contained in Chapter 1. Second, a few recently developed continuous-time ADP
methods are introduced in Chapters 2, 3, and 4. Chapter 2 covers the topic of ADP for
uncertain linear systems. Chapters 3 and 4 provide neural network-based and sum-of-
squares (SOS)-based ADP methodologies to achieve semi-global and global stabiliza-
tion for uncertain nonlinear continuous-time systems, respectively. Third, Chapters 5
and 6 focus on RADP for linear and ngnlinear systems, with dynamic uncertainties
rigorously addressed. In Chapter 5, different robustification schemes are introduced
to achieve RADP. Chapter 6 further extends the RADP framework for large-scale sys-
tems and illustrates its applicability to industrial power systems. Finally, Chapter 7
applies ADP and RADP to study the sensorimotor control of humans, and the results
suggest that humans may be using very similar approaches to learn to coordinate
movements to handle uncertainties in our daily lives.

This book makes a major departure from most existing texts covering the same
topics by providing many practical examples such as power systems and human
sensorimotor control systems to illustrate the effectiveness of our results. The book
uses MATLAB in each chapter to conduct numerical simulations. MATLAB is used
as a computational tool, a programming tool, and a graphical tool. Simulink, a
graphical programming environment for modeling, simulating, and analyzing mul-
tidomain dynamic systems, is used in Chapter 2. The third-party MATLAB-based
software SOSTOOLS and CVX are used in Chapters 4 and 5 to solve SOS pro-
grams and semidefinite programs (SDP). All MATLAB programs and the Simulink
model developed in this book as well as extension of these programs are available at
http://yu-jiang.github.io/radpbook/
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ACRONYMS

ADP
AOC
ARE
DF
DG
DP
GAS
HIB
10S
ISS
LQR
MDP

PE
PI
RADP

SDP
SOS
SUO
VF
VI

Adaptive/approximate dynamic programming
Adaptive optimal control

Algebraic Riccati equation
Divergent force field

Distributed generator/generation
Dynamic programming

Global asymptotic stability
Hamilton-Jacobi-Bellman (equation)
Input-to-output stability
Input-to-state stability

Linear quadratic regulator

Markov decision process

Null-field

Persistent excitation

Policy iteration

Robust adaptive dynamic programming
Reinforcement learning

Semidefinite programming
Sum-of-squares

Strong unboundedness observability
Velocity-dependent force field

Value iteration
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GLOSSARY

The Euclidean norm for vectors, or the induced matrix norm for matrices
For any piecewise continuous function u:R, — R™, |u| =
sup{|u(r)|,t > 0}

Kronecker product

The set of all continuously differentiable functions

The cost for the coupled large-scale system

The cost for the decoupled large-scale system

The set of all functions in C! that are also positive definite and radially
unbounded

Infinitesimal generator

The set of all real numbers

The set of all non-negative real numbers

The set of all polynomials in x € R" with degree no less than d; > 0 and
no greater than d,

vec(A) is defined to be the mn-vector formed by stacking the columns
of A € R™™ on top of another, that is, vec(A) = [alrazT a,{l]T, where
a; € R", withi = 1,2, ..., m, are the columns of A

The set of all non-negative integers

The vector of all ( 3 '('1‘2‘12 ) - (n ZldlI " ) distinct monic monomials
in x € R" with degree no less than ¢ > 0 and no greater than d,

VV refers to the gradient of a differentiable function V : R* -» R
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CHAPTER 1

INTRODUCTION

1.1 FROM RL TO RADP

1.1.1 Introduction to RL

Reinforcement learning (RL) is originally observed from the learning behavior in
humans and other mammals. The definition of RL varies in different literature. Indeed,
learning a certain task through trial-and-error can be considered as an example of
RL. In general, an RL problem requires the existence of an agent, that can interact
with some unknown environment by taking actions, and receiving a reward from it.
Sutton and Barto referred to RL as how fo map situations to actions so as to maximize
a numerical reward signal [47]. Apparently, maximizing a reward is equivalent to
minimizing a cost, which is used more frequently in the context of optimal control
[32]. In this book, a mapping between situations and actions is called a policy, and
the goal of RL is to learn an optimal policy such that a predefined cost is minimized.

As aunique learning approach, RL does not require a supervisor to teach an agent
to take the optimal action. Instead, it focuses on how the agent, through interactions
with the unknown environment, should modify its own actions toward the optimal
one (Figure 1.1). An RL iteration generally contains two major steps. First, the agent
evaluates the cost under the current policy, through interacting with the environment.
This step is known as policy evaluation. Second, based on the evaluated cost, the
agent adopts a new policy aiming at further reducing the cost. This is the step of
policy improvement.

Robust Adaptive Dy ic Progr ing, First Edition. Yu Jiang and Zhong-Ping Jiang.
© 2017 by The Institute of Electrical and Electronics Engineers, Inc. Published 2017 by John Wiley & Sons, Inc.
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2 INTRODUCTION

Cost ‘ Action

Agent

FIGURE 1.1 Illustration of RL. The agent takes an action to interact with the unknown

environment, and evaluates the resulting cost, based on which the agent can further improve
the action to reduce the cost.

As an important branch in machine learning theory, RL has been brought to the
computer science and control science literature as a way to study artificial intelli-
gence in the 1960s [37, 38, 54]. Since then, numerous contributions to RL, from a
control perspective, have been made (see, e.g., [2, 29, 33, 34, 46, 53, 56]). Recently,
AlphaGo, a computer program developed by Google DeepMind, is able to improve
itself through reinforcement learning and has beaten professional human Go players
[44]. Tt is believed that significant attention will continuously be paid to the study

of reinforcement learning, since it is a promising tool for us to better understand the
true intelligence in human brains.

1.1.2 Introduction to DP

On the other hand, dynamic programming (DP) [4] offers a theoretical way to solve
multistage decision-making problems. However, it suffers from the inherent com-
putational complexity, also known as the curse of dimensionality [41]. Therefore,
the need for approximative methods has been recognized as early as in the late
1950s [3]. In [15], an iterative technique called policy iteration (PI) was devised
by Howard for Markov decision processes (MDPs). Also, Howard referred to the
iterative method developed by Bellman (3, 4] as value iteration (VI). Computing the
optimal solution through successive approximations, Pl is closely related to learning
methods. In 1968, Werbos pointed out that PI can be employed to perform RL [58].
Starting from then, many real-time RL methods for finding online optimal control
policies have emerged and they are broadly called approximate/adaptive dynamic
programming (ADP) [31, 33, 41, 43, 55, 60-65, 68], or neurodynamic programming
[5]. The main feature of ADP [59, 61] is that it employs ideas from RL to achieve
online approximation of the value function, without using the knowledge of the
system dynamics.

1.1.3 The Development of ADP

The development of ADP theory consists of three phases. In the first phase, ADP
was extensively investigated within the communities of computer science and



