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Preface

If you see something, do you understand what it is?

You may be fortunate enough to possibly be able to grab it with your
hand; however, simply holding something does not mean you understand it
well. For example, what would you think about Figure 0.1. Figure 0.1 shows
an example of a knot diagram.

FIGURE 0.1 Knot diagram

In fact, there are many such things in the world that we can see and
touch but may not understand what they are.” For some mathematicians,
it is elementary to determine whether two representations corresponding to
the same knot (= same closed string object), which are shown in Figure 0.2;
Figure 0.2 shows two representations of the most simple non-trivial knot.

However, it would not be elementary to determine the same for the next
pair as shown in Figure 0.3. In fact, this pair is called a version of the Perko
pair' representing the same knot.

Historically, Perko found duplication in a knot table from the nineteenth
century, which implies that no one pointed out the duplication for about 75

*The knot diagram in Figure 0.1 represents a trivial knot, which was constructed by
referring to [1] and “The Culprit Undone” in [2, 4].

T“Perko pair” is a famous term among specialists. However, the author found several
versions of the Perko pair and noticed that it may not represent a unique pair.
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FIGURE 0.2 Two representations of the same knot
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FIGURE 0.3 Perko pair
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years. Hence, we can say that, in general, it is difficult to determine whether
two knot diagrams truly represent two different knots or actually represent
the same knot. Perko obtained a deformation (called an isotopy) from the left
figure to the right figure, as shown in Figure 0.4.
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FIGURE 0.4 Isotopy from the left to the right figure

If we omit every over/under-information of a crossing of a knot diagram,
the result is called a knot projection. Is it still difficult to determine what a
knot projection is?

In the 1920s, Reidemeister obtained a result that showed that RI, RII,
and RIT are sufficient to describe a deformation of any knot projection into
a simple closed curve, where RI, RIl, and RII are local replacements between
two knot projections as shown in Figure 0.5. Traditionally, in mathematics,
such a deformation is treated as a notion of homotopy.

E=D =] ==
FIGURE 0.5 Reidemeister moves RI, RII, and RII

In 2001, Ostlund formulated a question as follows:

Ostlund’s question: Let RI and RII denote the local replacements between two
knot projections as shown in Figure 0.5. For every knot projection P, are RI
and RII sufficient to describe a deformation of P into a simple closed curve?

In 2014, Hagge and Yazinski were the first to obtain an example to answer
to this question, which is shown in Figure 0.6.

However, a function on the set of the knot projections that can be used
to easily detect which knot projection is related to a simple closed curve by
a finite sequence generated by RI and RII has not been found. We still do
not have sufficient information about homotopies generated by RI and RII for
knot projections and more research on knot projections is needed.

The objective of this book to address the classification problem of knot
projections and discuss related topics. This monograph consists of 11 chapters.
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FIGURE 0.6 Example obtained by Hagge and Yazinski

Chapter 1 provides the definitions of knots and knot projections; in Chap-
ter 2, we learn why we consider Reidemeister moves from a result obtained in
the 1920s (Reidemeister’s Theorem). In Chapter 3, we describe a useful result
obtained by Whitney (1930s), i.e., two knot projections with the same rotation
number on a plane if and only if they are related by a finite sequence gener-
ated by RII, RII, and a plane isotopy. In Chapter 4, we reach the end of the
20th century, where Khovanov’s Theorem (1997) and its proof are described;
this theorem can be used to obtain the classification of knot projections under
homotopy generated by RI, RII, and sphere isotopy.

After obtaining the basic results based on the studies of Reidemeister,
Whitney, and Khovanov, we discuss most recent results, i.e., from 2013-2015.
We consider classifications using refined Reidemeister moves from the latter
part of Chapter 4 and Chapter 5. We decompose RIl into strong RIl and
weak RI; similarly, we decompose RII into strong RII and weak RII. This
decomposition is performed to not only provide a more detailed classification
from a general one but also to open a new viewpoint of this mathematical area.

Historically, Arnold discussed classification theory using the singularity
theory in mathematics to classify plane curves (= knot projections on a plane)
under strong RIl and RII, weak RIl and RII, or RI, i.e., without RI. The
structure of a differential that is used to obtain a good classification of knot
projection leads to the notion of Legendrian knots; however, RI cannot be used.
By contrast, following Arnold’s theory, many mathematicians have obtained
excellent results, which implies a good understanding of a classification with
respect to the equivalence relation generated by strong RI and weak RII.
Many of these works provide ideas to study knot projections further.

Thus, finally, we study the classification theory of knot projections by
considering a pair consisting of RI and other Reidemeister moves, denoted
by (RI,-), as shown in the following list. Each theory should be constructed
depending on the situation of each case because there is difficulty when consid-
ering RI as mentioned above. In these chapters, we introduce ideas to obtain
new invariants of knot projections. Here, an invariant of knot projections is a
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function on the set of the knot projections. Invariants are useful to determine
which two knot projections are not equivalent. In other words, for a case where
there is a situation such that there exist two different knot projections with
the same invariant values, the classification problem is still open.

e (RI,strong RI) or (RI, weak RI): the latter part of Chépter 4,

(RI, strong RIN): Chapter 5,

(RI, strong RII) or (RI, weak RII): Chapter 6,

(RI,RIN): Chapter 7,

(RI, strong RII) revisited: Chapter 8,

(RI, weak RI, weak RII): Chapter 10

Chapter 9 discusses topics related to (RI, strong RIl), i.e., unavoidable sets.
In topological studies, “unavoidable sets” is a famous term with respect to
the four-color theorem. In Chapter 9, unavoidable sets for knot projections as
described by Shimizu are introduced. Several definitions of reductivity related
to unavoidable sets and characterizations are introduced, based on the works
in [6] and [3].

In the last chapter, Chapter 11, we appreciate Viro’s remarkable work,
i.e., quantization of Arnold invariants of knot projections on a plane; his work
obtains an infinite family of invariants under (weak RIl, weak RII). This is
one of the most important goals achieved by Arnold’s theory for plane curves.
However, there has been no such quantum theory for knot projections with
respect to (RI,-) or a unified theory of invariants yet. Therefore, this chapter
is a part of the epilogue of this book.

The author would like to express his appreciation to Yukari Funakoshi
(Nara Women’s University) for the beautiful artwork preparation based on
the author’s hand-drawn figures.

The author thanks the editor, Nair Sunil (CRC Press); editorial assistant,
Alexander Edwards (CRC Press); his affiliate Waseda Institute for Advanced
Study (WIAS) and its staff; and Senja Barthel (Imperial College London) for
their valuable input.

Noboru Ito
Tokyo, February 2016
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CHAPTER 1

Knots, knot diagrams,
and knot projections
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L SO

not projections are knots in a three-dimensional space as closed string
K objects. Knots are not only common in the field of mathematics but also
in some areas of theoretical physics and biology. In this chapter, we define
knots, knot diagrams, and knot projections.

1.1 DEFINITION OF KNOTS FOR HIGH SCHOOL STUDENTS

A knot is the union of a finite number of straight line segments with no
boundaries in R® such that each endpoint joins exactly one of the remaining
endpoints. Here, R? is defined as {(z,y,2) | 2,3,z are real numbers}. We
can use a smooth plane curve, called a knot diagram, to represent a knot (see
Section 1.4), which is shown in Figure 1.1 (left). A straight line segment is
called an edge and an endpoint is called a vertez.
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FIGURE 1.1 A knot (right) and its knot diagram (left)



