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Preface

It is widely experienced throughout the electronics/aerospace industry
that power supplies give sise to more problems in design and reliability than
the complex systems which they power. This book seeks to remedy that situa-
tion. It deals with all aspects of power supply design—from the inttial block
diagram systems alternatives to the detailed circuit design of all the electronics
within the blocks. Written for both design engineer and undergraduate with
little or no knowledge of the power supply field and the available design alterna-
tives, this text should enable them first to make the best decision on a system
‘block diagram concept and then to implement it with detailed circuits, mag-
netics, and a safe thermal design. )

. Switching regulators—which are in the process of revolutionizing the
power supply industry because of their low internal losses, small size, and
weight and costs competitivée with conventional series-pass or linear power sup-

" . plies—are covered fully. Half-cycle width-modulated dc/dc converters, dc/dc

voltage down chopping, voltage up chopping, and transformer-coupled flyback
regulators are detailed. Design equations for critical components are derived
and typical designs presented. The dc/dc square-wave converters, used so fre-
quently with switching regulators in modern power supply systems, are treated
in depth. ’

- For the present, series-pass regulators remain the major design ap-
proach in the industry; these are discussed at length along with their fields of
application, advantages, capabilities, and disadvantages. Logical, step-by-step
design procedures are offered, and combinations of series-pass and -switching
regulators that retairf’ the best capabilities of each type in a complex system are
demonstrated. Efficiencies of various combinations are calculated.

Extensive discussion is devoted to magnetics—transformer and induc-
tor design for high-frequency switching regulators. Design equations for trans-
former core selection for a given power level, frequency, and magnetic flux
density are derived and typical designs shown. Design of inductors with air gaps
or molypermalloy powder cores to-avoid saturation in usual switching regulator
usages is also presented.



Elements of thermal design and heat-sink performance are evaluated,
with design equations and graphs showing temperature rise as a function of
power level, area, and air flow. Feedback loop stability is treated in detail.
Throughout, graphs are presented which permit gain and phase-shift calcula-
tions in the usual switching regulator elements—the LC filter and operational
amplifiers with RC feedback. Tailoring the gain-phase characteristic to achieve
loop stability is also’discussed, along with commonly occurring problems in
circuits and subtle failure modes in switching and series-pass power supplies.

The electronics industry has long had a vital need for a textbook on
the’ reliable desn,,n of all the complex electronics in a modern society—com-
puters, cominunications equipment, weapons systems and satellites, industrial
control, and consumer electronic equipment. It is hoped that this book will
fulfill the need for a comprehensive treatment of this sngmﬁcant element in our
modern electronic world.

ABRAHAM 1. PRESSMAN
Waban, Massachusetts ' :
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1
Basic Voltage Regulators,
Power Converters

1.0 Introduction

The voltage regulators considered herein generate single or multlple
output dc voltages whose magnitudes are substantially constant for any value of
static or dynamic load currents or input voltage within their specified llmlts

Input voltages can be dc or single- or multiple-phase ac at any of the
usual power line frequencies, generally ranging between 50 and 800 Hz. Magni-
tudes of the dc or rms ac input voltages can be higher or lower than the desired
output voltages. Output voltages must remain constant to the specified accuracy
with input voltages generally varying from +5 to +15% around their nominal
values and load currents varying from 0 to 100% of maximum at each output.
Often, the supplies must cope with transient input voltage changes in excess of
the =5 to +=15% steady-state variations. Duration of such transients may range
from less than one to several hundred milliseconds.

- Supplies are often required to have protective features such as the ability
to survive short-circuited outputs or output voltage limiting above specified
values. Limits on power supply efficiency, weight, size, cost, and audio and rfi
noise outputs are almost always specified.

The various ways to design power supplies to meet such specifications
will be dealt with in this book. In this chapter, the basic regulating and power-con-
verting techniques available to the designer will be presented in general terms
without going into detailed circuit designs. In the following chapter, systems com-
binations of these individual regulating schemes will be taken up in block diagram
form. Finally, subsequent chapters will go into detailed circuit designs of indi-
vidual regulators and combinations of regulator types comprising whole power
supply systems.

1.1 DC Voltage Regulators
1.1.1 Series-Pass Regulators

The series-pass regulator is the simplest, most frequently used but least
efficient regulating technique. Until the appearance of high-current, low-forward-
drop transistors, usable as high-frequency single-pole switches, it was the main

1
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Fig. 1-1. Basic series-pass voltage regulator. Q1 is an electronically
controlled variable resistance in series with the load.

and practically the only voltage-regulating technique up to power levels of 1,000
W. Techniques using constant voltage transformers and phase-controlled silicon-
controlled rectifiers (SCR) have certain fields of application but are slow in -
response to line and load changes and will not be considered herein. y

The basic series-pass regulator is shown in Fig. 1-1. It converts a variable
higher voltage dc to a constant lower voltage dc. Input is dc —either from a battery
source, which decreases in output as it discharges, or from a rectifier directly off
an ac line source or from a rectifier following a step-up or step-down transformer.

In either of the latter cases, the rectified dc output is proportional to ac
line input and will thus vary by the same +5 to =15% usually specified for ac line
sources. Further, usual rectifier outputs will have a large-amplitude ripple voltage
at some harmonic of the line frequency superimposed on the rectified dc. The
series-pass regulator will eliminate both the line harmonic ripple and the slower
dc variations proportional to line changes, yielding a constant output voltage.
Output voltage can be made as constant as desired, limited only by the stability
of the reference sources, dnft in the difference amplifier, and gain in the feedback
loop.

In Fig. 1-1, the output is kept constant by using the series-pass element
consisting of one or a number of paralleled transistors as a variable resistance
device. As the input rises or falls, the effective resistance of the series element is
increased or decreased so that it, rather than the output load, absorbs the input
voltage change. The series element is controlled to give a constant output voltage
by the negative-feedback loop composed of the resistor sampling chain, the dif-
ference amplifier, and voltage amplifier-level shifter element.

A fraction of the output voltage, [R2/(R1 + R2)]V,, is sampled and
compared to a constant reference voltage, V,. The difference amplifier yields
a voltage proportional to the difference between V, and the output sample. The
amplified difference voltage is further amplified and the dc level shifted to drive
the input terminal of the series element. Voltage polarities are such that a small
increase or decrease in output voltage resulting from line or load changes causes
the correct increase or decrease, respectively, in series element impedance to
keep the output constant. The output adjusts itself so that the sampled fraction
V,R2/(R1 + R2) is very closely equal to the reference voltage.
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It is obvious from Fig. 1-1 thar all of the output load current must flow
through the series-pass element at a.dc voltage drop of Vi, — V,. The mini-
mum efficiency occurs at maximum input voltage and is equal to P,/Py, = V,l, +
Vinmaxlo = VolVinmax)- The larger the difference between input and output volt-
age, the larger the internal dissipation for a given load current. Any dc voltage
can be dropped down and regulated to any lower voltage, but.the series-pass
element must be capable of absorbing the maximum dissipation at its maximum
voltage drop.

Thus, the series-pass regulator of Fig. 1-1 is seen to be simple, com-
prised only of a series voltage dropping element, resistor voltage sampling chain,
difference amplifier, and voltage amplifier-level shifting dévice. But the relatively
high dissipation across the series element at the maximum input voltage results
in low output-input power efficiency.

1.1.2 Series-Pass Regulator Efficiency

In the usual power supply, whose prime input is ac line power, efficiency
calculations must consider rectifier drop, ripple, transformer regulation, and
transformer losses. But here, to start with, maximum attainable efficiencies will
be calculated for sources with totally ripple-free dc output voltage whose magm
tude can be set at any desired value to maximize regulator efficiency.

Such efficjencies will be the highest achievable for a given output
voltage. Practical efficiencies for regulators with optimum ac inputs and realistic
ripple voltage at regulator input terminal will be calculated in Chap. 6.

The usual series-pass element, npn or pnp power transistor, has a knee
in its I .-V . curve at about 2.0 V (Fig. 1-2A). Although operation below the knee
is possible, gain is low and a larger fraction of input changes would be trans-
mitted to the output if operation below the knee were permitted.

Thus, in Fig. 1-1 with output taken from the emitter, the minimum input
voltage permissible at the collector when the input is at its low tolerance limit ,
is (¥, + 2) volts. For a nominal input voltage of ¥, and tolerances of =T percent,
minimum and maximum input voltages are then (1 —0.017)¥V, and (1 + 0.017)
V.. Since the minimum input voltage must be no less than V, + 2, then

(1-001TVW,=V,+2

and maximum input voltage is

1+0.01T

1 +0017)V, = (1= Sorr)Ve+2

And minimum efficiency, which occurs at maximum input voltage, is

Ve
Vo/Vln(max) = (l + OOlT)(V x 2)
1-0.017)" °
;3 . 1—-0.01T v, )
or Minimum efficiency = (l T 0_0”,) (Vo * 2) (1-1)

Efficiencies calculated from Eq. 1-1 are plotted in Fig. 1-3 for input
tolerances of =5, +10, and +15%. Such efficiencies are realizable from dc sources
having no ripple and at output voltages 2 V below the minimum dc input. It will
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Fig. 1-3. Maximum possible efficiency versus output voltage for a
series-pass voltage regulator.

be seen in Chap. 6 that when the input source is the rectified output of a trans-
former and when the effect of transformer losses, rectifier -output ripple, and
rectifier losses are considered, efficiencies considerably less than shown in Fig.
1-3 resulit. :

1.2 Pulse-Width-Modulated Series-Switch Step-Down Converter

Figure 1-4 shows a far superior way of obtaining a lower voltage from
a higher one. Instead of absorbing the difference between the input and desired
output with a power-dissipating element, a low-impedance transistor switch is
made to open and close periodically between input and output. If the switch S1
has zero voltage drop in its closed position, the output shown in Fig. 1-4A varies
periodically between. zero volts and the input voltage. The average or dc value
of this waveform is V, = V;,T./T, where T, is the switch-closed time and T is
the switching period. This is the voltage that would be read with a dc voltmeter
at the output terminals. The ripple component has a peak-to-peak value of Vy,
~ volts and would, of course, not be observed by a dc voltmeter.

By adding the L1-Cl filter as shown in Fig. 1-4B, the ripple component
can be reduced to any desired value, yielding a clean dc voltage of magnitude
Vo=Vin(T./T). By going to high switching.rates permitted by transistor switches
(5-50 kHz), the filter components L1 and C1 become quite small.

Fig. 1-2. Characteristics of an often-used series-pass transistor. (Cour-
tesy RCA) ’
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Fig. 1-4. (A) Switching voltage converter average output voltage at
V,=Vu(T.IT). (B) Switching voltage converter with LC fiker and diode
for eliminating ripple.

Any desired output voltage lower tha:i the input can be obtained by
varying the width of the “on” time T or the ratic 7./T. Such a voltage stepdown
is achieved at very high efficiency, since th: only losses in such a stepdown are
those primarily in the switch S1 when it is closed. Using a transistor switch,
the voltage drop with the switch ih the closed position can be as low as 1 V.
During the time the switch is open, the full input voltage is absorbed, but since
no current flows in it, there is no power dissipation.

During the transition between open-switch and closed-switch times
or vice versa, there is a momentary overlap of high voltage and current, which
does yield some losses. Even with such switching losses, efficiencies of 95% are
achievable.

1.2.1 Pulse-Width-vodulated Voltage Converter Efficiency

The circuit has the interesting properties of a step-down transformer.
With a relatively large inductance for L1, the current in L1 remains constant
during the switch-open time. As the switch opens, there is an inductive “kick”
across L1 with its input end going negative, since current in an inductor cannot
change instantaneously. It goes negative until diode D1 (often referred to as a,
“free-wheeling” diode) latches on and starts conducting with its cathode one



