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PREFACE

An understanding of flight stability and control played an important role in the
ultimate success of the earliest aircraft designs. In later years the design of auto-
matic controls ushered in the rapid development of commercial and military air-
craft. Today, both military and civilian aircraft rely heavily on automatic control
systems to provide artificial stabilization and autopilots to aid pilots in navigating
and landing their aircraft in adverse weather conditions. The goal of this book is
to present an integrated treatment of the basic elements of aircraft stability, flight
control, and autopilot design.

NEW TO THIS EDITION

In the second edition, I have attempted to improve the first six chapters from the
first edition. These chapters cover the topics of static stability, flight control,
aircraft dynamics and flying qualities. This is accomplished by including more
worked-out example problems, additional problems at the end of each chapter,
and new material to provide additional insight on the subject. The major change in
the text is the addition of an expanded section on automatic control theory and
its application to flight control system design.

CONTENTS

This book is intended as a textbook for a course in aircraft flight dynamics for
senior undergraduate or first year graduate students. The material presented in-
cludes static stability, aircraft equations of motion, dynamic stability, flying or
handling qualities, automatic control theory, and application of control theory to
the synthesis of automatic flight control systems. Chapter 1 reviews some basic
concepts of aerodynamics, properties of the atmosphere, several of the primary
flight instruments, and nomenclature. In Chapter 2 the concepts of airplane static
stability and control are presented. The design features that can be incorporated
into an aircraft design to provide static stability and sufficient control power are
discussed. The rigid body aircraft equations of motion are developed along with
techniques to model the aerodynamic forces and moments acting on the airplane in
Chapter 3. The aerodynamic forces and moments are modeled using the concept
of aerodynamic stability derivatives. Methods for estimating the derivatives are
presented in Chapter 3 along with a detailed example calculation of the longitudinal
derivatives of a STOL transport. The dynamic characteristics of an airplane for free
and forced response are presented in Chapters 4 and 5. Chapter 4 discusses the
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longitudinal dynamics while Chapter 5 presents the lateral dynamics. In both
chapters the relationship between the rigid body motions and the pilot’s opinion of
the ease or difficulty of flying the airplane is explained. Handling or flying qualities
are those control and dynamic characteristics that govern how well a pilot can fly
a particular control task. Chapter 6 discusses the solution of the equations of
motion for either arbitrary control input or atmospheric disturbances. Chapters
7-10 include the major changes incorporated into the second edition of this book.
Chapter 7 provides a review of classical control concepts and discusses control
system synthesis and design. The root locus method is used to design control
systems to meet given time and frequency domain performance specifications.
Classical control techniques are used to design automatic control systems for vari-
ous flight applications in Chapter 8. Automatic control systems are presented that
can be used to maintain an airplane’s bank angle, pitch orientation, altitude, and
speed. In addition a qualitative description of a fully automated landing system is
presented. In Chapter 9, the concepts of modern control theory and design tech-
niques are reviewed. By using state feedback design, it is theoretically possible for
the designer to locate the roots of the closed loop system so that any desired
performance can be achieved. The practical constraints of arbitrary root placement
are discussed along with the necessary requirements to successfully implement
state feedback control. Finally in Chapter 10 modern control design methods are
applied to the design of aircraft automatic flight control systems.

LEARNING TOOLS

To help in understanding the concepts presented in the text I have included a
number of worked-out example problems throughout the book, and at the end of
each chapter one will find a problem set. Some of the example problems and
selected problems at the end of later chapters require computer solutions. Commer-
cially available computer aided design software is used for selected example prob-
lems and assigned problems. Problems that require the use of a computer are
clearly identified in the problem sets. A major feature of the textbook is that the
material is introduced by way of simple exercises. For example, dynamic stability
is presented first by restricted single degree of freedom motions. This approach
permits the reader to gain some experience in the mathematical representation and
physical understanding of aircraft response before the more complicated multiple
degree of freedom motions are analyzed. A similar approach is used in developing
the control system designs. For example, a roll autopilot to maintain a wings level
attitude is modeled using the simplest mathematical formulation to represent the
aircraft and control system elements. Following this approach the students can be
introduced to the design process without undue mathematical complexity. Several
appendices have also been included to provide additional data on airplane aerody-
namic, mass, and geometric characteristics as well as review material of some of
the mathematical and analysis techniques used in the text.
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CHAPTER 1

e B TS S e S S e 6 e o e g S T e T

Introduction

“For some years I have been afflicted with the belief that flight is possible
to man.”

Wilbur Wright, May 13, 1900

1.1
ATMOSPHERIC FLIGHT MECHANICS

Atmospheric flight mechanics is a broad heading that encompasses three major
disciplines; namely, performance, flight dynamics, and aeroelasticity. In the past
each of these subjects was treated independently of the others. However, because
of the structural flexibility of modern airplanes, the interplay among the disciplines
no longer can be ignored. For example, if the flight loads cause significant structural
deformation of the aircraft, one can expect changes in the airplane’s aerodynamic
and stability characteristics that will influence its performance and dynamic
behavior.

Airplane performance deals with the determination of performance character-
istics such as range, endurance, rate of climb, and takeoff and landing distance as
well as flight path optimization. To evaluate these performance characteristics, one
normally treats the airplane as a point mass acted on by gravity, lift, drag, and
thrust. The accuracy of the performance calculations depends on how accurately
the lift, drag, and thrust can be determined.

Flight dynamics is concerned with the motion of an airplane due to internally
or externally generated disturbances. We particularly are interested in the vehicle’s
stability and control capabilities. To describe adequately the rigid-body motion of
an airplane one needs to consider the complete equations of motion with six
degrees of freedom. Again, this will require accurate estimates of the aerodynamic
forces and moments acting on the airplane.

The final subject included under the heading of atmospheric flight mechanics
is aeroelasticity. Aeroelasticity deals with both static and dynamic aeroelastic
phenomena. Basically, aeroelasticity is concerned with phenomena associated with
interactions between inertial, elastic, and aerodynamic forces. Problems that arise
for a flexible aircraft include control reversal, wing divergence, and control surface
flutter, to name just a few.
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FIGURE 1.1
Advanced technologies incorporated in the X-29A aircraft.

This book is divided into three parts: The first part deals with the properties of
the atmosphere, static stability and control concepts, development of aircraft equa-
tions of motion, and aerodynamic modeling of the airplane; the second part exam-
ines aircraft motions due to control inputs or atmospheric disturbances; the third
part is devoted to aircraft autopilots. Although no specific chapters are devoted
entirely to performance or aeroelasticity, an effort is made to show the reader, at
least in a qualitative way, how performance specifications and aeroelastic phenom-
ena influence aircraft stability and control characteristics.

The interplay among the three disciplines that make up atmospheric flight
mechanics is best illustrated by the experimental high-performance airplane shown
in Figure 1.1. The X-29A aircraft incorporates the latest advanced technologies in
controls, structures, and aerodynamics. These technologies will provide substantial
performance improvements over more conventional fighter designs. Such a design
could not be developed without paying close attention to the interplay among
performance, aeroelasticity, stability, and control. In fact, the evolution of this
radical design was developed using trade-off studies between the various disciplines
to justify the expected performance improvements.

The forces and moments acting on an airplane depend on the properties of the
atmosphere through which it is flying. In the following sections we will review some
basic concepts of fluid mechanics that will help us appreciate the atmospheric
properties essential to our understanding of airplane flight mechanics. In addition
we will discuss some of the important aircraft instruments that provide flight
information to the pilot.
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1.2
BASIC DEFINITIONS

The aerodynamic forces and moments generated on an airplane are due to its
geometric shape, attitude to the flow, airspeed, and the properties of the ambient
air mass through which it is flying. Air is a fluid and as such possesses certain fluid
properties. The properties we are interested in are the pressure, temperature,
density, viscosity, and speed of sound of air at the flight altitude.

1.2.1 Fluid

A fluid can be thought of as any substance that flows. To have such a property, the
fluid must deform continuously when acted on by a shearing force. A shear force
is a force tangent to the surface of the fluid element. No shear stresses are present
in the fluid when it is at rest. A fluid can transmit forces normal to any chosen
direction. The normal force and the normal stress are the pressure force and
pressure, respectively.

Both liquids and gases can be considered fluids. Liquids under most conditions
do not change their weight per unit of volume appreciably and can be considered
incompressible for most engineering applications. Gases, on the other hand, change
their weight or mass per unit of volume appreciably under the influences of pressure
or temperature and therefore must be considered compressible.

1.2.2 Pressure

Pressure is the normal force per unit area acting on the fluid. The average pressure
is calculated by dividing the normal force to the surface by the surface area:

P== (1.1)

The static pressure in the atmosphere is nothing more than the weight per unit
of area of the air above the elevation being considered. The ratio of the pressure P
at altitude to sea-level standard pressure P, is given the symbol &:

P

S:FO

(1.2)

The relationship between pressure, density p, and temperature 7'is given by the
equation of state
P = pRT (1.3)

where R is a constant, the magnitude depending on the gas being considered.
For air, R has a value 287 J/(kg°K) or 1718 ft*/(s*’R). Atmospheric air follows the
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equation of state provided that the temperature is not too high and that air can be
treated as a continuum.

1.2.3 Temperature

In aeronautics the temperature of air is an extremely important parameter in that
it affects the properties of air such as density and viscosity. Temperature is an
abstract concept but can be thought of as a measure of the motion of molecular
particles within a substance. The concept of temperature also serves as a means of
determining the direction in which heat energy will flow when two objects of
different temperatures come into contact. Heat energy will flow from the higher
temperature object to that at lower temperature.

As we will show later the temperature of the atmosphere varies significantly
with altitude. The ratio of the ambient temperature at altitude, 7, to a sea-level
standard value, 7}, is denoted by the symbol 6:

0 =— (1.4)

where the temperatures are measured using the absolute Kelvin or Rankine scales.

1.2.4 Density

The density of a substance is defined as the mass per unit of volume:

Mass

- Unit of volume (1.3)

p
From the equation of state, it can be seen that the density of a gas is directly
proportional to the pressure and inversely proportional to the absolute tempera-
ture. The ratio of ambient air density p to standard sea-level air density p, occurs
in many aeronautical formulas and is given the designation o:

o = p/po (1.6)

1.2.5 Viscosity

Viscosity can be thought of as the internal friction of a fluid. Both liquids and gases
possess viscosity, with liquids being much more viscous than gases. As an aid in
visualizing the concept of viscosity, consider the following simple experiment.
Consider the motion of the fluid between two parallel plates separated by the
distance A. If one plate is held fixed while the other plate is being pulled with a
constant velocity u, then the velocity distribution of the fluid between the plates will
be linear as shown in Figure 1.2.

To produce the constant velocity motion of the upper plate, a tangential force
must be applied to the plate. The magnitude of the force must be equal to the
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FIGURE 1.2

Shear stress between two plates.

friction forces in the fluid. It has been established from experiments that the force
per unit of area of the plate is proportional to the velocity of the moving plate and
inversely proportional to the distance between the plates. Expressed mathemati-
cally we have

T

(1.7)

Ol IS

where 7 is the force per unit area, which is called the shear stress.

A more general form of Equation (1.7) can be written by replacing u/h with
the derivative du/dy. The proportionality factor is denoted by wu, the coefficient of
absolute viscosity, which is obtained experimentally.

du
TZME; (1.8)

Equation (1.8) is known as Newton’s law of friction.

For gases, the absolute viscosity depends only on the temperature, with in-
creasing temperature causing an increase in viscosity. To estimate the change in
viscosity with the temperature, several empirical formulations commonly are used.
The simplest formula is Rayleigh’s, which is

3/4
Mo T1>
— == 1.9
Mo <To : )

where the temperatures are on the absolute scale and the subscript 0 denotes the
reference condition.

An alternate expression for calculating the variation of absolute viscosity with
temperature was developed by Sutherland. The empirical formula developed by
Sutherland is valid provided the pressure is greater than 0.1 atmosphere and is

w (5)““ T, + S,
T T +8

Mo

(1.10)

where S, is a constant. When the temperatures are expressed in the Rankine scale,
S, = 198°R; when the temperatures are expressed in the Kelvin scale, S, = 110°K.

The ratio of the absolute viscosity to the density of the fluid is a parameter that
appears frequently and has been identified with the symbol v; it is called the



