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Preface

This document seeks to give an appreciation of the wide
range of issues associated with the design of durable
concrete structures, and matters concerned with service
life design. The material reported here is drawn from
many sources, which have, it is hoped, been adequately
acknowledged. The document attempts to reflect
recent and evolving developments, and thereby give an
up-to-date overview on matters concerned with service
life design. This is a process whose overall objective is to
ensure that the concrete structure concerned achieves
appropriate durability —which is one of the primary
functional requirements that the design and construction
process should be expected to deliver.

The document contains 19 main chapters;

1 Introduction

2 Overview of the service life design, construction and
through-life care process

3 Through-life performance, life-cycle cost and
sustainability

4 Mechanisms that may cause deterioration or damage
to concrete structures

5 Some factors influencing the durability of concrete

structures

Environmental aggressivity

Recommendations in standards and codes of practice

Overview of modelling of deterioration processes

Factorial approach to estimating service life

Service life design process and considerations

Measures to enhance resistance or avoid

reinforcement corrosion

12 Measures to enhance resistance and avoid
deterioration

13 Influence of some design, execution and
workmanship issues on durability

14 Construction quality issues: the role of the project
execution specification

15 Improving durability: benefits of pre-construction
planning and trials

16 Condition control: planned through-life structure
management and care

17 Monitoring of durability and performance

18 Examples from practice

19 Future look: potential developments influencing
service life design
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Preface i

This publication is an updated and significantly extended
version of Volume 3 (Chapter 5) of the second edition

of the fib Structural concrete textbook, which deals
generally with the behaviour, design and performance of
structural concrete. Volume 3 of the second edition of the
fib Structural concrete textbook, which was published as
fib Bulletin 53 in December 2009, is concerned with the
design of durable concrete structures. Stuart Matthews
prepared fib Bulletin 53, which was an updating and
extensive further development of the chapter on
durability prepared by Dr Steen Rostam that formed part
of the original fib Structural concrete textbook, and was
published as part of fib Bulletin 3 in 1999.

This updated and extended version takes account of
subsequent developments in fib Model Code 2010 for
the design of concrete structures between the early
committee draft versions available when fib Bulletin 53
was produced and the final version due for publication in
2012, as well as those in related areas of service life design
for concrete structures, such as those associated with
ISO/DIS 16204. Account has also been taken of recent
technical activities within groups such as fib Commission
5: Structural service life aspects. Other revisions and
additions include further developments associated with
topics such as the through-life management and care

of concrete structures (Chapters 2 and 3), the diversity

in views on the effect of cracks in concrete upon
durability (Chapter 5), and the potential future influence
of sustainability on service life design considerations
(Chapter 19). In addition, various amendments have been
made to the earlier text to reflect specific aspects of UK
technical practice and guidance in this area (particularly
BS 8500 and associated standards).

Chapter 1 provides an introduction and sets out the scope
of the issues, providing an overview of the document. It
notes that modern concrete forms a family of materials,
and seeks to indicate why durability of concrete structures
is important. It reviews previous experience in terms

of the in-service performance of concrete structures,

and the need to take a holistic view when creating
durable concrete structures. The chapter also notes the
importance of variations in concrete properties and the
durability-critical role of the cover concrete, and outlines
some simple conceptual models for the deterioration
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caused by the corrosion of reinforcement. It introduces
the benefits of considering through-life performance,
life-cycle cost and sustainability perspectives when
undertaking outline service life design and developing
durability and service life design concepts. The chapter
provides definitions and terminology, before giving an
overview of the various approaches to service life design
and drawing parallels between contemporary structural
and probabilisticbased service life design concepts.

Chapter 2 builds on Chapter 1 to provide an overview of
the service life design, construction and through-life care
process. It examines the role and importance of the client
brief and the definition of performance expectations,
before headlining environment aggressivity classification,
conceptual and detailed design for durability, and the
deemed-to-satisfy durability solutions design given in
codes and standards. The chapter introduces the concept
of probabilistic, performance-based service life design,
before examining the way in which project specifications
can be used by clients and owners as a tool to achieve the
desired durability, and the importance of the execution
of the construction works for through-life care and
maintenance aspects.

Chapter 3 examines through-life performance, life-cycle
cost and sustainability issues, and seeks to draw out
wider societal sustainability perspectives, as well as
consideration of life-cycle cost issues.

Chapter 4 reviews mechanisms that may cause
deterioration or damage to concrete structures. It
provides an overview of deterioration and damage
mechanisms (but excludes damage arising from
accidental actions), and outlines the role of water and
moisture transport mechanisms in this. The chapter looks
in detail at mechanisms that may cause deterioration

or damage, classifying these into four groups: those
causing physical deterioration and damage processes in
concrete; those associated with chemical deterioration
processes; those associated with biological deterioration
processes in concrete; and the corrosion of reinforcement.
Consideration is briefly given to deterioration mechanisms
acting in combination.

Chapter 5 reviews some factors that influence the
durability of concrete structures. These include the
geometrical form and architectural detailing of the
structure; the cement type, mix design and concrete
quality; the reinforcement type, and the depth and
quality of the concrete cover; together with the potential
influence of cracking, crack width and crack orientation.

Chapter 6 examines issues associated with environmental
aggressivity, looking at moisture-driven deterioration
processes, atmospheric-induced deterioration, the role of
temperature-induced effects, and a contemporary system
for the classification of environmental exposure.

Chapter 7 reviews the recommendations made in some
standards and codes of practice, looking at those given
in the CEB-FIP Model Code 1990 (CEB-FIP, 1992) and
the fib Model Code for Service Life Design (fib, 2006b)
(published in fib Bulletin 34), together with the guidance
given in BS EN 1992 Concrete structures (Eurocode 2,
BSI, 2004 - 2006) and associated product standards.
The approach and content of fib Model Code 2010 (fib,
2012b) and ISO 16204 (ISO, 2012) are also examined.

Chapter 8 provides a brief overview of the modelling

of deterioration processes, with the main focus being
on carbonation and chloride-induced corrosion of
reinforcement in uncracked concrete. Consideration

is also given to the modelling of other mechanisms of
deterioration, such as frost attack, sulfate attack, alkali—
aggregate reaction, leaching and surface weathering,
and abrasion by ice. The application of deterministic and
probabilistic models is discussed, together with the partial
factor method. The results for reinforcement corrosion
obtained from a deterministic service life design model
are compared with those from a probabilistic model.

Chapter 9 explains the use of the factorial approach to
estimating service life, making reference to a process used
for combining additional protective measures to extend
service life.

Chapter 10 examines the service life design process

and related considerations, outlining the main steps

in a service life design procedure, and the approaches
that may be adopted for detailed service life design,
together with the definition of the target service life
and environmental aggressivity. The various steps in the
overall service life design procedure are introduced, but
with more detailed discussion being provided about

the adoption of a multi-layer protection approach, with
an example of this concept being given for multi-layer
protection of prestressing tendons, as given in fib Bulletin
33 (fib, 2006a). Additional observations are made for
durability and service life design issues for environments
where de-icing salt is applied, and for structures in a
marine environment. The concepts associated with Birth
Certificate documentation and reliability updating are
also explained.

Chapter 11 presents detailed recommendations for
measures to enhance resistance or avoid reinforcement
corrosion on the basis of the selection of cementitious
materials, the use of admixtures and fibres, ways of
enhancing the resistance of the surface of the concrete,
ways of enhancing tolerance to carbonation and
chlorides, and the avoidance approach (ie the design-out
approach). The chapter concludes with an overview of
measures to enhance resistance or avoid reinforcement
corrosion.
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Chapter 12 summarises some measures to enhance
resistance or avoid forms of deterioration other than
reinforcement corrosion.

Chapter 13 examines the influence of some design,
execution and workmanship issues on the durability of
concrete structures. The matters considered include:

the influence of locally available concrete materials

and labour; dimensioning of structural elements;
reinforcement detailing and congestion; compaction and
curing of concrete; the use of controlled-permeability
formwork, self-compacting concrete and high-
performance concrete; durability problems associated
with spacers and chairs to support reinforcement; and
the use of inserts and fixtures. The benefits of using of
stainless steel reinforcement, the role of quality assurance
and quality control, and the potential importance of
aesthetics and appearance issues are discussed.

Chapter 14 examines construction quality issues and, in
particular, the role of the project execution specification
in creating greater certainty of achieving durable concrete
structures. The approach adopted is centred on the
European construction standards and the Execution
Standard (BS EN 13670; BSI, 2009d), with observations
being made about how these link with the quality
management standards contained in the ISO 9000 series.

Chapter 15 discusses the potential benefits of pre-
construction planning and trials as a means of improving
the durability of concrete structures, particularly for major
infrastructure projects. Six steps to delivering improved
certainty of achieving durable concrete construction are
set down.

Chapter 16 describes the condition control processes

that may be adopted for planned through-life structure
management and care, linking these into an overall
process of condition survey and monitoring activities,
condition assessment and condition evaluation. These are
based on the concepts developed in the work undertaken

for Chapter 9: ‘Conservation’ of fib Model Code 2010
(fib, 2012b). This chapter outlines the role of classes of
condition control within the process of through-life
management of a structure, describing the associated
condition control levels and inspection regimes. While

a strategy using proactive condition control measures is
recommended for new concrete structures, the approach
outlined allows for reactive condition control measures,
and for situations where condition control measures are
not feasible (ie foundations).

Chapter 17 describes methodologies for monitoring the
durability and performance of a concrete structure. It
provides advice on the locations for surveys, testing and
monitoring activities, condition survey and monitoring
activities, tools and techniques for surveys, and
monitoring and data gathering for condition control
purposes. As with Chapter 16, the approach is based
on the concepts developed in the work undertaken for
Chapter 9: ‘Conservation’ of fib Model Code 2010. The
chapter also briefly considers issues associated with the
automated monitoring of concrete structures, and how
these techniques can link to the updating of service life
predictions.

Chapter 18 presents details of two service life design
examples from practice: the Great Belt Fixed Link,
Denmark, and the Western Scheldt Tunnel, the
Netherlands.

Chapter 19 provides a future look, examining some
potential developments that may influence durability and
service life design in the future. The topics considered
include the fib Model Code 2010, the need for improved
scientific understanding of deterioration processes,
anticipated developments in cementitious and concrete
materials, and the further development and application of
service life design principles.

The document concludes with extensive lists of references
and further reading.
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