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PREFACE

The aim of this book is to illustrate the importance of under-
standing the fundamental solid-state properties of pharma-
ceutical materials during the development of solid pharma-
ceutical products and to lay out general strategies for the
physical characterization of solids using various analytical
tools. Generally, great emphasis is understandably placed on
the discovery of new active pharmaceutical ingredients (API)
for the cure, treatment, and prevention of various acute and
chronic diseases. However, it has been firmly established
that the ability to obtain successful drug products in an effi-
cient and timely manner strongly depends on the formulation
and manufacture of stable and bioavailable drugs into useful
products, where various physical and chemical characteris-
tics play an essential role. In essence, it can be said, therefore,
that a “drug” is more than a molecule, rather being part of a
complex mixture of materials with physical chemical char-
acteristics that can determine therapeutic success or failure.

The book is divided into four parts. The first part focuses
on the various phases or forms that solids can assume, includ-
ing polymorphs, solvates/hydrates, salts, cocrystals, amor-
phous forms, crystal mesophases, and nanocrystals, and var-
ious issues related to their relative stability and tendencies to
undergo transformations. The second part focuses on the key
methods of solid-state analysis such as X-ray crystallogra-
phy, X-ray powder diffraction, thermal analysis, microscopy,

vibrational spectroscopy, and solid-state NMR. The third part
reviews critical physical attributes of pharmaceutical mate-
rials, mainly related to drug substances, including particle
size/surface area, hygroscopicity, mechanical properties, sol-
ubility, and physical and chemical stability. The fourth part
of the book builds on the first three parts to illustrate how
an understanding of the various properties of pharmaceutical
materials may be used for (1) the rational selection of drug
solid form, (2) the analysis of mixtures of various solid forms
within the drug substance and the drug product, (3) establish-
ing rational protocols and strategies for carrying out efficient
and successful product development, and (4) applications
of appropriate manufacturing and control procedures, using
Quality by Design, and other strategies that lead to safe and
effective products with a minimum of resources and time.

Furthermore, we have attempted to design this book in
such a way that it can be used by preformulation and for-
mulation scientists, process engineers, analytical chemists,
quality assurance and quality control managers, regulators,
and other researchers, who all contribute to the drug devel-
opment process. We hope that by presenting a mixture of
fundamental solid-state science and its practical applications
to the drug development process we will have helped all
involved to gain a greater perspective of the importance of
both aspects.

xi
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SOLID-STATE PROPERTIES AND PHARMACEUTICAL

DEVELOPMENT

1.1 INTRODUCTION

Solid-state chemistry and the solid-state properties of phar-
maceutical materials play an ever increasing and important
role in pharmaceutical development. There is much more
emphasis on physical characterization since the release of
the International Committee on Harmonization (ICH) Q6A
guidance on specifications. This guidance directs the scientist
to determine what solid form is present in the drug substance
(active pharmaceutical ingredient [API]) and drug product. It
directs the manufacturer to “know what they have.” Addition-
ally, the ICH Q8 guidance on development and the ICH Q9
guidance on risk management require a firm understanding
of how the medicine was developed and any risks involved.

There are many more poorly soluble drugs under devel-
opment. In many cases, the solid form of the API and
the solid form and formulation in the drug product deter-
mine apparent solubility that in turn determines blood lev-
els. That is, the formulation determines bioavailability and
therapeutic response. In these cases, it is even more impor-
tant to physically characterize the API form and the formu-
lations. Furthermore, the vast majority of medicines (drug
products) are solids and those drug products that are not
solids often start with solid APIs. In addition to solubil-
ity and bioavailability, the solid form may affect stability,
flow, compression, hygroscopicity, and a number of other
properties.

This book focuses on solid-state properties of pharmaceu-
tical materials and methods of determining these properties.
The authors have made every effort to include examples and

case studies in order to illustrate the importance of knowing
what you have. This book will focus on solid-state prop-
erties and general strategies for physical characterization.
Case studies and practical examples will be emphasized. In
many respects, this book will illustrate that a medicine is
more than a molecule. Additional goals include providing a
full physical/analytical/operational definition of the different
solid forms as well as other terms frequently used in phar-
maceutical materials science including: polymorph, solvate,
amorphous form, habit, nucleation, transformation, dissolu-
tion, solubility, and stability.

1.2 SOLID-STATE FORMS

Pharmaceutical materials can exist in a crystalline or amor-
phous state. Figure 1.1 illustrates the crystalline state as a
perfectly ordered solid with molecules (circles) packed in an
orderly array. Figure 1.1 illustrates an amorphous material
as a disordered material with only short-range order. Crys-
talline materials give an X-ray diffraction pattern because
Bragg planes exist in the material (see Figure 1.2). Amor-
phous materials do not give a diffraction pattern (Figure 1.2).
Of course, there are many interesting cases where a phar-
maceutical material shows an intermediate degree of order
falling somewhere between the highly ordered crystalline
state and the disordered amorphous state. From a thermody-
namic point of view, crystalline materials are more stable but
the rate of transformation of amorphous materials to crys-
talline materials can be highly variable [1].

Solid-State Properties of Pharmaceutical Materials, First Edition. Stephen R. Byrn, George Zografi and Xiaoming (Sean) Chen.

© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.



2 SOLID-STATE PROPERTIES AND PHARMACEUTICAL DEVELOPMENT
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FIGURE 1.1 Idealized view of crystalline (left panel) and amorphous (right panel) material. In
this two-dimensional figure, the molecules are viewed as circles.

Crystals of a pharmaceutical material from different
sources can vary greatly in their size and shape. Typical parti-
cles in different samples may resemble, for example, needles,
rods, plates, and prisms. Such differences in shape are col-
lectively referred to as differences in morphology. This term
merely acknowledges the fact of different shapes. It does not
distinguish among the many possible reasons for the different

4500

shapes. Naturally, when different compounds are involved,
different crystal shapes would be expected as a matter of
course. When batches of the same substance display crystals
with different morphology, however, further work is needed
to determine whether the different shapes are indicative of
polymorphs, solvates, or just habits. Because these distinc-
tions can have a profound impact on drug performance, their

[count s] 1
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FIGURE 1.2 X-ray diffraction pattern of three samples, crystalline, low crystallinity, and

amorphous.



careful definition is very important to our discourse. At this
time, only brief definitions are presented.

* Polymorphs: When two crystals have the same chemical
composition but different internal structure (molecular
packing), they are polymorphic modifications, or poly-
morphs (think of the three forms of carbon: diamond,
graphite, and fullerenes). Polymorphs can result from
different molecular packing, different molecular confor-
mation, different tautomeric structure, or combinations
of these.

Solvates: These crystal forms, in addition to containing
molecules of the same given substance, also contain
molecules of solvent regularly incorporated into a unique
structure (think of wet, setting plaster: CaSO,4 + 2H,0 —
CaSO,4-2H,0).

Habits: Crystals are said to have different habits when
samples have the same chemical composition and the
same crystal structure (i.e., the same polymorph and unit
cell) but display different shapes (think of snowflakes).

Together, these solid-state physical modifications of a com-
pound are referred to as crystalline forms. When differences
between early batches of a substance are found by micro-
scopic examination, for example, a reference to “form” is
particularly useful in the absence of information that allows
the more accurate description of a given variant batch (i.c.,
polymorph, solvate, habit, or amorphous material). The term
pseudopolymorphism is applied frequently to designate sol-
vates. These solid-state modifications have different physical
properties.

SOLID-STATE FORMS 3

To put these important definitions into a practical con-
text, we consider two cases (aspirin and flufenamic acid)
in which a drug was crystallized from several different sol-
vents and different-shaped crystals resulted in each exper-
iment. Although sometimes dramatically different shapes
were obtained upon changing solvents for the various crys-
tallizations, the final interpretations in the two cases are dif-
ferent. For aspirin, X-ray powder diffraction showed that all
crystals regardless of shape had the same diffraction pattern.
Thus, the different shaped crystals are termed crystal habits.
For flufenamic acid, the different shaped crystals had differ-
ent X-ray powder diffraction patterns. Subsequent analysis
showed that the crystals did not contain solvent. Thus these
different crystals are polymorphs.

Further analysis of the crystals from this case provides
the single crystal structure. The single crystal structure
gives the locations of the atoms relative to a hypothetical unit
cell. The unit cell is the smallest building block of a crys-
tal. Figure 1.3 shows the unit cell of Form I of flufenamic
acid. This unit cell contains four flufenamic acid molecules.
Figure 1.4 shows a space-filling model of the contents of
the flufenamic acid Form I unit cell. This figure illustrates
Kitaigorodskii’s close-packing theory, which requires that
the molecules pack to minimize free volume [2].

Amorphous materials will be discussed in Chapter 6. In
this introductory chapter as mentioned briefly above, amor-
phous materials have no long range order and are thermody-
namically metastable. An amorphous solid is characterized
by a unique glass transition temperature T, the temperature
at which it changes from a glass to a supercooled liquid or
rubbery state. When 7 rises above T, the rigid solid can

COOH

T

(@]

m
w

FIGURE 1.3 Single crystal structure the Form I polymorph of flufenamic acid (structure shown

on the right panel).



4 SOLID-STATE PROPERTIES AND PHARMACEUTICAL DEVELOPMENT

FIGURE 1.4 Space filling drawing of the unit cell of flufenamic
acid Form 1.

flow and the corresponding increase in molecular mobility
can result in crystallization or increased chemical reactiv-
ity of the solid. Several historic papers describe some addi-
tional details of amorphous materials. Pikal and coworkers at
Eli Lilly showed that amorphous materials can have lower
chemical stability [3], and Fukuoka et al. showed amorphous
materials had a tendency to crystallize [4]. Nevertheless, in
some cases, amorphous forms have been historically used
as products. An excellent example is novobiocin [5], which
exists in a crystalline and an amorphous form. The crys-
talline form is poorly absorbed and does not provide thera-
peutic blood levels; in contrast, the amorphous form is readily
absorbed and is therapeutically active. Further studies show
that the solubility rate of the amorphous form is 70 times
greater than the crystalline form in 0.1 N HCI at 25°C when
particles <10 micron are used.

i
|
)

It is possible to make a “top 107 list of the differences
between crystalline and amorphous materials. Crystalline
materials have the following characteristics:

1. higher purity,

[\

. More physically and chemically stable, crystalline
hydrate > anhydrous crystal > amorphous
3. lower solubility,

H

. narrow and (usually) higher melting point range,

W

. harder,

. brittle — slip and cleavage,

. directionally dependent properties — anisotropy,
. less compressible,

O 00 N N

. better flow and handling characteristics, and

—
~
>

. less hygroscopic.

From this list, it is clear that crystalline materials are gen-
erally more desirable unless they are so insoluble that they
cannot be used as medicines.

Not only do polymorphs show different X-ray powder
diffraction patterns but they also have different unit cells,
and different properties including thermal properties [6]. Fig-
ure 1.5 shows the different crystal packing of the Forms I and
IT of sulfathiazole.

Additionally, polymorphs are characterized as monotropic
or enantiotropic depending upon their thermal properties
[9,10].

* Monotropic polymorphs exist if the transition tem-
perature between forms is greater than the melt.
In monotropic polymorphs, one form is most stable
throughout the temperature range.

* Enantiotropic polymorphs exist if the transition tem-
perature between forms occurs before melting. In this
case, one form is more stable at one temperature. At a

FIGURE 1.5 Crystal packing and unit cells (grey) of Forms 1 (left panel) and Il (right panel)
of sulfathiazole. The grey and black molecules in Form I indicate two unrelated molecules in the
asymmetric unit. Source: Kruger and Gafner, 1971 [7, 8]. Redrawn from data published.



different temperature the other form is most stable. For
flufenamic acid, Form I is most stable above the tran-
sition temperature of 42°C and Form III is most stable
below the transition temperature. Practically, this means
that slurrying at room temperature will convert Form 1
to Form III.

Crystalline solvates contain solvents regularly incorporated
into the crystal lattice. When the solvent is water the solid
form is called a hydrate. Solvates and hydrates do not have
the same composition as unsolvated materials. Solvates and
hydrates are sometimes referred to as pseudopolymorphs or
solvatomorphs. Interestingly, it is possible for solvates and
hydrates to be polymorphic. In such a case one has polymor-
phic solvates. Kuhnert Brandstatter in her 1971 book showed
photomicrographs of 16 solvates of estradiol [11]. Figure 1.6
shows the crystal structure of caffeine monohydrate. The
crystal of caffeine is built up by stacking the layers shown in
Figure 1.6 on top of each other. Thus the hydrate molecules
are in tunnels in this solid form.

It is important to note that the FDA (Food and Drug
Administration) has defined polymorphs as “different crys-
talline forms of the same drug substance. This may include
solvation or hydration products (also known as pseudopoly-
morphs) and amorphous forms. Per the current regulatory
scheme, different polymorphic forms are considered the same
active ingredients.” Thus, for purposes of registration, sci-
entists are directed to define polymorphs more broadly to
include amorphous forms, solvates, and hydrates.

Cocrystals, that is, two component crystals, are another
solid material of interest. Like solvates, the new crystalline

FIGURE 1.6 Projection of the crystal structure of caffeine
hydrate on the ab plane. Source: Burger and Ramberger, 1979
[9.10]. Reproduced with the permission of Springer.
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FIGURE 1.7 Crystal structure of a cocrystal (2-methoxy-4-
nitrophenol-4-(dimethylamino) pyridine (2:1)). The unit cell param-
eters are a = 6.880, b = 38.40, ¢ = 8.454, and the space group is
Pna2,. Source: Burger and Ramberger, 1979 [9, 10]. Reproduced
with the permission of Springer.

structure imparts different properties including solubility,
stability, and mechanical properties to the material. Of special
interest are cocrystals with altered solubility or stability. Fig-
ure 1.7 shows the crystal structure of a cocrystal of phenol and
2-methoxy-4-nitrophenol—4-(dimethylamino)pyridine (2:1)
[12]. The FDA has recently released a draft guidance defining
cocrystals as “Solids that are crystalline materials composed
of two or more molecules in the same crystal lattice.”

Pharmaceutical salts are substances formed by a reaction
of an acid and a base. The FDA has suggested the follow-
ing definition of salts as “Any of numerous compounds that
result from replacement of part or all of the acid hydrogen
of an acid by a metal or a radical acting like a metal: an
ionic or electrovalent crystalline compound. Per the current
regulatory scheme, different salt forms of the same active
moiety are considered different active ingredients.” When
a carboxylic acid reacts with an amine a salt is typically
formed (Scheme 1.1). However, the degree of proton transfer
can vary depending on the acidity and basicity of the reacting
groups. The FDA definition seems to encompass all of these
materials.

RCOOH + H,N — R’ — RCOO™ .- H;N* —R

SCHEME 1.1



