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The book consists of two parts: Part 1 is a standard text of dislocation theory.
Mathematics is avoided as much as possible. Part 2 describes application of
dislocation theory, which includes mechanical properties (including the inverse
temperature dependence of strength) and dislocations in functional materials such
as Si, GaN and SiC and dislocations in a thin crystal such as an epitaxial layer. This
is what has been long anticipated among researchers in industry.

The book contains about 330 illustrations (mostly originals by the author) and the
pictures obtained by the author by means of in-situ experiment in a transmission
electron microscope over the past 50 years.

This book includes many exercises, which the author found useful when he was
teaching in Department of Materials Science and Engineering of Nagoya University
to stimulate their interests in dislocation theory.

B(g) = (a)(g)
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Foreword

A crystal consists of atoms or molecules that are arranged regularly in three
dimensions. However, in real crystals. this regularity is disturbed, giving rise
to disorders. These disorders in crystals are referred to as lattice imperfec-
tions (lattice defects). Among the lattice defects, linear defects are referred
to as dislocations. Most of the crystals we treat practically contain dislo-
cations. In metallic erystals, dislocations provide plasticity and strength.
Dislocations are friendly in metallic crystals. In contrast, dislocations in
semiconductors are nothing else but adversary. deteriorating the optical
and electrical properties.-

Therefore, the first barrier to overcome in developing semiconductors
is to grow crystals as perfect as possible. In the case of silicon, which is
by now a commodity in the industry. a vast amount of energy was to be
spent before obtaining dislocation-free perfect crystals in its early stage
of development. In the case of gallium nitride, which was more recently
developed successfully. it is no exaggeration to say that growth of high-
quality crystals with a low dislocation density was the key to the success in
developing high-performance light-emitting devices and electronic devices.

Science of dislocations, i.e., theory of dislocations, has been well estab-
lished to explain plasticity of metallic materials. A detailed knowledge on
dislocations is essential in the field of semiconductor engineering as well.
However, theory of dislocations is quite a difficult science. mastering of
which is time-consuming and painstaking. Therefore, those researchers and
engineers who are actually being engaged in research and development of
novel semiconductor materials have awaited a systematic and vet easy text-
book of theory of dislocations.
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In view of this, Dr. Hiroyasu Saka published a textbook of dislocation
theory that covers fundamentals to cutting-edge applications. The author
has studied dislocations by means of transmission electron microscopy over
half a century. Thus, in the textbook some of the transmission electron
microscopy observations are used, together with generous original diagrams.
This is the first textbook that deals with dislocations in cutting-edge semi-
conductors such as GaAs, SiC, and GaN. In conclusion. it provides the
classical theory of dislocation covering from fundamentals to cutting-edge
applications in such a style that even beginners can read easily.

I would like to recommend this book as a bible to win a battle against
dislocations, which will last forever in developing novel materials.

February 2016 Isamu Akasaki Nagoya Japan



Preface

Theory of dislocations is one of the most difficult sciences for students in

materials science and engineering (MSE) for the following three reasons:

(1)

Geometrical consideration of dislocation, typical of which is Burgers
vector: The definition of Burgers vector appears quite simple, however,
it is rather difficult to master its significance completely. Many begin-
ners stumble here.

Elasticity theory: The concept of dislocations stems from applied math-
ematics. Thus, it has been taken as granted that advanced mathematics
is indispensable to understand the theory of dislocations. This is not
necessarily so. It is true that solid state physicists have contributed
much towards developing theory of dislocations, but too much mathe-
matics has been required as a prerequisite condition for the beginners
to master theory of dislocations. Many, if not all, students in MSE are
not good enough in advanced mathematics. This is another reason why
students of MSE stay away from theory of dislocations.
Crystallography: Dislocations are crystal defects. Therefore, it is need-
less to say that a detailed knowledge of crystallography is indispensable.
However, knowledge of traditional crystallography is of little use. It is
the crystallography for dislocations, such as Thompson tetrahedron,
that is necessary.

Theory of dislocations has contributed much toward understanding

plastic behaviour of metallic materials which are important as structural

materials. However, there is still a gap between theory and practice not only

in a quantitative sense but also in a qualitative sense. For instance, with

vil



viii Classical Theory of Crystal Dislocations

regard to controversy on the nature of dislocations in Si, shuffle-glide con-
troversy, the gap is hopelessly wide. Supercomputer is expected to bridge
this gap. However, needless to say, in order to make full use of the com-
puter’s ability, comprehensive knowledge on classical theory of dislocations
is crucial.

On the other hand, a new development is emerging. Importance of dis-
locations in functional materials is now being recognized. It is well known
that reducing the dislocation density in a compound semiconductor GaN
was the key to the invention of an LED. Reducing the dislocation density
in SiC, a promising candidate for a power device, is also an urgent issue.
These materials are quite brittle at room temperature, however, they are
surprisingly ductile at high temperatures. In other words. in a high tem-
perature region where these functional materials are processed, behaviour
of dislocations is quite spectacular. ‘Dislocations are living’ literally! It is
this understanding that leads to realization of novel functional materials.

In view of these backgrounds, this book is intended:

(1) to summarize elements of classical theory of crystal dislocations with
mathematics kept to a minimum

(2) to provide a detailed knowledge on behaviour of dislocations in cutting-
edge materials, especially semiconductors.

The first seven chapters are devoted to fundamental properties of dislo-
cations in general. Chapters 8 11 are devoted to detailed description of dis-
locations in different crystal structures of importance. Chapter 12 is devoted
to macroscopic strength of materials, in particular, structural materials. A
variety of strengthening mechanisms are presented. Chapter 13 is devoted
to behaviour of dislocations in thin crystals such as epilayers and transmis-
sion electron microscopy (TEM) foil specimens.

The expected audience is twofold. One is students of MSE. The other
is researchers and/or engineers who are struggling in reducing the dislo-
cation density in the products they are developing and/or manufacturing.
Fortunately, the author has studied dislocations using TEM, some of which
are used in this book. He would like to express his hearty thanks to his
graduate students and colleagues who took these TEM pictures. Finally,
he owes much to Dr. Takashi Saka for discussions in Chapters 3 and 4 and
also Dr. Ichiro Yonenaga for discussion on polarity in Chapter 11.

February 2016 Hiroyasu Saka Nagoya Japan
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