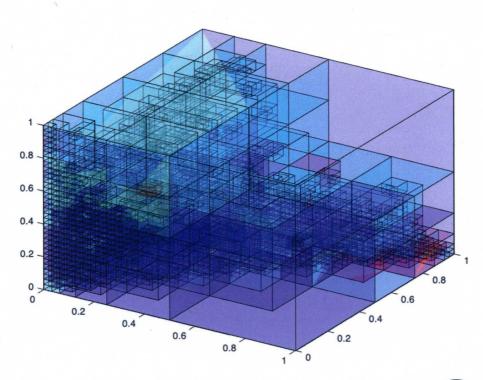
Mathematical Methods of Physics

Karl Barnes



Mathematical Methods of Physics

Mathematical Methods of Physics continues to provide all the mathematical methods that aspiring scientists and engineers are likely to encounter as students and beginning researchers. It provides an accessible account of most of the current, important mathematical tools required in physics these days. It is assumed that the reader has an adequate preparation in general physics and calculus. The book is designed primarily for researcher and practitioner as well as advanced graduate physics majors, but could also be used by students in other subjects, such as engineering, astronomy and mathematics. First chapter reviews the fundamental diffusion theories relevant to the general F2 law, where they are systematically reframed in points of view different from the previous works, adding some new discussions to them. The new findings obtained here will be widely applicable to fundamental problems as a standard theory in various actual diffusion phenomena. The main objective of second chapter is used the extended mapping method and auxiliary equation method to construct the exact solutions for nonlinear evolution equations in the mathematical physics via the variant Boussinesq equations and the coupled KdV equations. The purpose of third chapter is to avoid such contradictions by using new mathematical methods coming from the formal theory of systems of partial differential equations and Lie pseudo groups. The purpose of fourth chapter is to present for the first time an elementary summary of a few recent results obtained through the application of the formal theory of partial differential equations and Lie pseudogroups in order to revisit the mathematical foundations of general relativity. Fifth chapter demonstrate that the use of Bayesian statistics conforms to the Maximum Entropy Principle in information theory and Bayesian approach successfully resolves dilemmas in the uneven probability Monty Hall variant. Sixth chapter presents a numerical method for nonlinear singularly perturbed multi-point boundary value problem. In seventh chapter, an analytical model for multifractal systems is developed by combining and improving the Jake model, Tyler fractal model and Gompertz curve, which allows one to obtain explicit expressions of a multifractal spectrum. Eighth chapter emphasizes on transformation formulas for the first kind of lauricella's function of several variables. In ninth chapter, we will investigate the solution of the nonlinear Zhiber-Shabat equation and last chapter deals with methods for ordinary differential equations.

Karl Barnes hold Ph.D. in Mathematical Analysis. He served as Visiting Professor of Physics more than seven years. He has published several articles and research papers in physics journals and is the co-author of two textbooks.

ISBN 978-1-68250-409-3

Barnes

Mathematical Methods of Physic

Mathematical Methods of Physics

Editor:

Karl Barnes

www.magnumpublishing.net

© 2017 by
Magnum Publishing LLC
1 Radisson Plaza # 800
New Rochelle, New York
NY 10801
United States of America

Mathematical Methods of Physics

Editor: Karl Barnes

ISBN: 978-1-68250-409-3

Printed in Republic of Korea

This book contains information obtained from highly regarded resources. Copyright for individual articles remains with the authors as indicated. All chapters are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Notice

The editors and the Publisher have attempted to trace the copyright holders of all material reproduced in this publication and apologise to copyright holders if permission has not been obtained. If any copyright holder has not been acknowledged, please write to us so we may rectify.

Reasonable efforts have been made to publish reliable data. The views articulated in the chapters are those of the individual contributors, and not necessarily those of the editors or the Publisher. Editors and/or the Publisher are not responsible for the accuracy of the information in the published chapters or consequences from their use. The Publisher accepts no responsibility for any damage or grievance to individual(s) or property arising out of the use of any material(s), instruction(s), methods or thoughts in the book.

For more information about Magnum Publishing and its products, visit our website at www.magnumpublishing.net

Mathematical Methods of Physics

List of Contributors

Takahisa Okino

Department of Applied Mathematics, Faculty of Engineering, Oita University, Oita City, Japan

Jameel F. Alzaidy

Mathematics Department, Faculty of Science, Taif University, Taif, KSA

Jean-Francois Pommaret

CERMICS, Ecole des Ponts ParisTech, 77455 Marne-la-Vallée Cedex 02, France

Jean-Francois Pommaret

CERMICS, Ecole des Ponts ParisTech, 77455 Marne-la-Vallée Cedex 02, France

Jennifer L. Wang

Norcross High School, Norcross, GA, USA

Tina Tran

Norcross High School, Norcross, GA, USA

Fisseha Abebe

Department of Mathematics and Statistics, Clark Atlanta University, Atlanta, GA, USA

Musa Cakır

Department of Mathematics, Faculty of Science, University of Yuzuncu Yil, Van, Turkey

Derya Arslan

Department of Mathematics, Faculty of Science, University of Yuzuncu Yil, Van, Turkey

Jun Li

Key Laboratory of Mountain Surface Process and Hazards/Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China

Fadhle B. F. Mohsen

Department of Mathematics, Faculty of Education-Zingibar, Aden University, Aden, Yemen

Ahmed Ali Atash

Department of Mathematics, Faculty of Education-Shabwah, Aden University, Aden, Yemen

Hussein Saleh Bellehaj

Department of Mathematics, Faculty of Education-Shabwah, Aden University, Aden, Yemen

Luwai Wazzan

Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia

Preface

Mathematical Methods of Physics continues to provide all the mathematical methods that aspiring scientists and engineers are likely to encounter as students and beginning researchers. It provides an accessible account of most of the current, important mathematical tools required in physics these days. It is assumed that the reader has an adequate preparation in general physics and calculus. The book is designed primarily for researcher and practitioner as well as advanced graduate physics majors, but could also be used by students in other subjects, such as engineering, astronomy and mathematics. First chapter reviews the fundamental diffusion theories relevant to the general F2 law, where they are systematically reframed in points of view different from the previous works, adding some new discussions to them. The new findings obtained here will be widely applicable to fundamental problems as a standard theory in various actual diffusion phenomena. The main objective of second chapter is used the extended mapping method and auxiliary equation method to construct the exact solutions for nonlinear evolution equations in the mathematical physics via the variant Boussinesq equations and the coupled KdV equations. The purpose of third chapter is to avoid such contradictions by using new mathematical methods coming from the formal theory of systems of partial differential equations and Lie pseudo groups. The purpose of fourth chapter is to present for the first time an elementary summary of a few recent results obtained through the application of the formal theory of partial differential equations and Lie pseudogroups in order to revisit the mathematical foundations of general relativity. Fifth chapter demonstrate that the use of Bayesian statistics conforms to the Maximum Entropy Principle in information theory and Bayesian approach successfully resolves dilemmas in the uneven probability Monty Hall variant. Sixth chapter presents a numerical method for nonlinear singularly perturbed multi-point boundary value problem. In seventh chapter, an analytical model for multifractal systems is developed by combining and improving the Jake model, Tyler fractal model and Gompertz curve, which allows one to obtain explicit expressions of a multifractal spectrum. Eighth chapter emphasizes on transformation formulas for the first kind of lauricella's function of several variables. In ninth chapter, we will investigate the solution of the nonlinear Zhiber-Shabat equation and last chapter deals with methods for ordinary differential equations.

Editor

Table of Contents

	List of Contributors	ix
	Preface	xi
Chapter 1	•	
	Abstract	
	1. Introduction	
	2. Fundamental Theory of Diffusion Equation	
	3. Interdiffusion Problems	
	4. Analysis of Diffusion Equation in Parabolic Space	
	5. Universal Expression of Diffusivity	
	6. Results	
	7. Discussion	
	References	4/
Chapter 2		F.1
	Mathematical Physics	
	Abstract	
	Introduction Description of the Extended Mapping Method	
	Description of the Extended Mapping Method Applications of the Method	
	Conclusion and Discussion	
	References	
	References	04
Chapter 3	3 The Mathematical Foundations of Gauge Theory Revisited	69
	Abstract	69
	1. Introduction	69
	2. First Part: The Nonlinear Janet and Spencer Sequences	75
	3. Second Part: The Linear Janet And Spencer Sequences	82
	4. Third Part: The Duality Scheme	85
	Conclusion	90
	References	91
Chapter 4	The Mathematical Foundations of General Relativity Revisited	93
	Abstract	93
	1. Introduction	94
	2. First Part: From Lie Groups to Lie Pseudogroups	96
	3. Second Part: The Janet and Spencer Sequences	110
	4. Third Part: Algebraic Analysis	119

	5.	Example 3.2:	119		
		Conclusion	126		
		References	126		
Chapter 5	Max	ximum Entropy and Bayesian Inference for the Monty			
		l Problem	129		
		Abstract	129		
	1.	Introduction	129		
	2.	Methods	131		
		Conclusions	139		
		Acknowledgements	141		
		References	141		
Chapter 6	AN	Jumerical Method for Nonlinear Singularly Perturbed			
•		lti-Point Boundary Value Problem	143		
		Abstract	143		
	1.	Introduction	143		
	2.	The Continuous Problem	144		
	3.	Discretizaton And Non-Uniform Mesh	149		
	4.	Error Analysis	152		
	5.	Numerical Example	156		
		Conclusion	160		
		References	160		
Chapter 7	An Analytical Model for Multifractal Systems163				
		Abstract	163		
	1.	Introduction	163		
	2.	Description of Methods	164		
	3.	Application To Multifractal Systems	170		
		Conclusion	174		
		References	174		
Chapter 8	Transformation Formulas for the First Kind of Lauricella's				
•	Fun	ection of Several Variables	177		
		Abstract	177		
	1.	Introduction	177		
	2.	Main Result	181		
	3.	Applications	184		
		Conclusion			
		References	186		
Chapter 9	Solu	utions of Zhiber-Shabat and Related Equations Using			
	A Modified Tanh-Coth Function Method187				
	Abs	stract	187		

	1.	Introduction	187
	2.	The Modified Tanh-Coth Function Method	188
		Conclusion	202
		References	
Chapter 10	Meth	nods for Ordinary Differential Equations	205
	1.	First-Order Differential Equations	206
	2.	Second-Order Equations with Constant Coefficients	
	3.	Nature of the Solution of Linear Equations	
	4.	General Solutions of the Second-Order Equations	218
	5.	Finding the Complementary Function	218
	6.	Finding the Particular Integral	222
	7.	Particular Integral And The Operator D (=D/Dx)	
	8.	Rules for D Operators	225
	9.	Ordinary and Singular Points of a Differential Equation	232
	10.	Frobenius and Fuchs Theorem	233
	11.	Simultaneous Equations	242
		References	
	Citat	tions	249
	Inde	x	251

MATHEMATICAL PHYSICS IN DIFFUSION PROBLEMS

Takahisa Okino

Department of Applied Mathematics, Faculty of Engineering, Oita University, Oita City, Japan

ABSTRACT

Using the divergence theorem and the coordinate transformation theory for the general Fickian second law, fundamental diffusion problems are investigated. As a result, the new findings are obtained as follows. The unified diffusion theory is reasonably established, including a self-diffusion theory and an N (N 3 2) elements system interdiffusion one. The Fickian first law is incomplete without a constant diffusion flux corresponding to the Brown motion in the localized space. The cause of Kirkendall effect and the nonexistence of intrinsic diffusion concept are theoretically revealed. In the parabolic space, an elegant analytical method of the diffusion equation is mathematically established, including a nonlinear diffusion equation. From the Schrödinger equation and the diffusion equation, the universal expression of diffusivity proportional to the Planck constant is reasonably obtained. The material wave equation proposed by de Broglie is also derived in relation to the Brown motion. The fundamental diffusion theories discussed here will be highly useful as a standard theory for the basic study of actual interdiffusion problems such as an alloy, a compound semiconductor, a multilayer thin film, and a microstructure material.

Keywords: Brown Particle, Boltzmann Factor, Markov Process, Parabolic Law, Error Function

INTRODUCTION

First of all, we state that the basic diffusion equation of the general nonlinear Fickian second law is discussed in accordance with the fundamental mathematical physics in the present work. The extended diffusion equations in detail are not thus discussed. Nevertheless, the new findings, which are extremely dominant in the diffusion study,

are reasonably obtained. In the diffusion history, the problems relevant to the coordinate transformation of diffusion equation had not been discussed in accordance with the Gauss divergence theorem until recently. That is just a reason why the new diffusion theories are discussed in the present study. It will be gradually clarified in the text that the coordinate transformation theory is essentially indispensable for the diffusion study. It is obvious that analyzing the extended diffusion equation must be based on the fundamental diffusion theory. The new fundamental findings different from the existing diffusion theories obtained here will thus exert a great influence on the actual diffusion problems in detail, just because of fundamental ones.

A great many phenomena in various science fields are expressed by using the well-known evolution equations. The diffusion equation is one of them and mathematically corresponds to the Markov process in relation to the normal distribution rule [1]. In other words, the motion of diffusion particles corresponds to the well-known Brown movement satisfying the parabolic law [2] [3]. It is widely accepted that the Brown problem is a general term of investigating subjects in various science fields relevant to the Markov process, such as material science, information science, life science, and social science [4] - [9].

In physics, we can also understand the diffusion equation in accordance with the Gauss divergence theorem [10]. If we apply the divergence theorem to the diffusion problem for a material under the condition of no sink and source of the material, it is found that the material conservation law is valid for the diffusion particles, regardless of a thermodynamic state of material. The diffusion equation is also called "the continuous equation" and is extremely fundamental one in physics. In history, the heat conduction equation, which is mathematically equivalent to the diffusion equation, was proposed by Fourier, regardless of the Markov process and the divergence theorem [11].

In accordance with the industrial requirement, the solid materials, such as alloys, semiconductors, and multilayer materials, have been widely fabricated. The heat treatment is indispensable for their fabrication processes then. The migration of particles in a material is caused by the heat treatment. In relation to the migration of their particles, the diffusion problems of various solid materials have been thus widely investigated [12]. Therefore, the diffusion problem is a fundamental study subject in the materials science including the cases of liquid and gas states.

In the present work, the fundamental problems of the general Fickian second law where a driving force affects the diffusion system are discussed in accordance with the mathematical theory. The present analytical method is applicable to interdiffusion problems of an N elements system of every material in an arbitrary thermodynamic state. Although the physical validity of the present method is investigated by using the diffusion data concerning the solid metals, the mathematical generality discussed here is still kept.

The heat conduction equation proposed by Fourier in 1822 has been applied to investigating the temperature distribution in materials [11]. In 1827, the so-called Brown motion was found, where the self-diffusion of water was visualized by pollen micro particle motions [2] [3]. In 1855, Fick applied the heat conduction equation to diffusion phenomena as it had been [13]. Nevertheless, the Brown motion had not been