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Preface

Mathematical Methods of Physics continues to provide all the mathematical methods that as-
piring scientists and engineers are likely to encounter as students and beginning researchers. It
provides an accessible account of most of the current, important mathematical tools required in
physics these days. It is assumed that the reader has an adequate preparation in general physics
and calculus. The book is designed primarily for researcher and practitioner as well as advanced
graduate physics majors, but could also be used by students in other subjects, such as engineering,
astronomy and mathematics. First chapter reviews the fundamental diffusion theories relevant
to the general F2 law, where they are systematically reframed in points of view different from
the previous works, adding some new discussions to them. The new findings obtained here will
be widely applicable to fundamental problems as a standard theory in various actual diffusion
phenomena. The main objective of second chapter is used the extended mapping method and
auxiliary equation method to construct the exact solutions for nonlinear evolution equations in
the mathematical physics via the variant Boussinesq equations and the coupled KdV equations.
The purpose of third chapter is to avoid such contradictions by using new mathematical methods
coming from the formal theory of systems of partial differential equations and Lie pseudo groups.
The purpose of fourth chapter is to present for the first time an elementary summary of a few
recent results obtained through the application of the formal theory of partial differential equa-
tions and Lie pseudogroups in order to revisit the mathematical foundations of general relativity.
Fifth chapter demonstrate that the use of Bayesian statistics conforms to the Maximum Entropy
Principle in information theory and Bayesian approach successfully resolves dilemmas in the
uneven probability Monty Hall variant. Sixth chapter presents a numerical method for nonlinear
singularly perturbed multi-point boundary value problem. In seventh chapter, an analytical model
for multifractal systems is developed by combining and improving the Jake model, Tyler fractal
model and Gompertz curve, which allows one to obtain explicit expressions of a multifractal
spectrum. Eighth chapter emphasizes on transformation formulas for the first kind of lauricella’s
function of several variables. In ninth chapter, we will investigate the solution of the nonlinear
Zhiber-Shabat equation and last chapter deals with methods for ordinary differential equations.
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MATHEMATICAL PHYSICS IN DIFFUSION PROBLEMS

Takahisa Okino

Department of Applied Mathematics, Faculty of Engineering, Oita University, Oita
City, Japan

ABSTRACT

Using the divergence theorem and the coordinate transformation theory for the
general Fickian second law, fundamental diffusion problems are investigated. As
a result, the new findings are obtained as follows. The unified diffusion theory is
reasonably established, including a self-diffusion theory and an N (N 3 2) elements
system interdiffusion one. The Fickian first law is incomplete without a constant
diffusion flux corresponding to the Brown motion in the localized space. The
cause of Kirkendall effect and the nonexistence of intrinsic diffusion concept are
theoretically revealed. In the parabolic space, an elegant analytical method of the
diffusion equation is mathematically established, including a nonlinear diffusion
equation. From the Schrédinger equation and the diffusion equation, the universal
expression of diffusivity proportional to the Planck constant is reasonably obtained.
The material wave equation proposed by de Broglie is also derived in relation
to the Brown motion. The fundamental diffusion theories discussed here will be
highly useful as a standard theory for the basic study of actual interdiffusion
problems such as an alloy, a compound semiconductor, a multilayer thin film, and
a microstructure material,

Keywords: Brown Particle, Boltzmann Factor, Markov Process, Parabolic Law, Error
Function

INTRODUCTION

First of all, we state that the basic diffusion equation of the general nonlinear Fickian
second law is discussed in accordance with the fundamental mathematical physics in
the present work. The extended diffusion equations in detail are not thus discussed.
Nevertheless, the new findings, which are extremely dominant in the diffusion study,
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are reasonably obtained. In the diffusion history, the problems relevant to the coordinate
transformation of diffusion equation had not been discussed in accordance with the
Gauss divergence theorem until recently. That is just a reason why the new diffusion
theories are discussed in the present study. It will be gradually clarified in the text
that the coordinate transformation theory is essentially indispensable for the diffusion
study. It is obvious that analyzing the extended diffusion equation must be based on the
fundamental diffusion theory. The new fundamental findings different from the existing
diffusion theories obtained here will thus exert a great influence on the actual diffusion
problems in detail, just because of fundamental ones.

A great many phenomena in various science fields are expressed by using the well-
known evolution equations. The diffusion equation is one of them and mathematically
corresponds to the Markov process in relation to the normal distribution rule [1] . In
other words, the motion of diffusion particles corresponds to the well-known Brown
movement satisfying the parabolic law [2] [3] . It is widely accepted that the Brown
problem is a general term of investigating subjects in various science fields relevant
to the Markov process, such as material science, information science, life science, and
social science [4] - [9] .

In physics, we can also understand the diffusion equation in accordance with the
Gauss divergence theorem [10] . If we apply the divergence theorem to the diffusion
problem for a material under the condition of no sink and source of the material, it is
found that the material conservation law is valid for the diffusion particles, regardless of
a thermodynamic state of material. The diffusion equation is also called “the continuous
equation” and is extremely fundamental one in physics. In history, the heat conduction
equation, which is mathematically equivalent to the diffusion equation, was proposed
by Fourier, regardless of the Markov process and the divergence theorem [11] .

In accordance with the industrial requirement, the solid materials, such as
alloys, semiconductors, and multilayer materials, have been widely fabricated. The
heat treatment is indispensable for their fabrication processes then. The migration of
particles in a material is caused by the heat treatment. In relation to the migration of
their particles, the diffusion problems of various solid materials have been thus widely
investigated [12] . Therefore, the diffusion problem is a fundamental study subject in
the materials science including the cases of liquid and gas states.

In the present work, the fundamental problems of the general Fickian second law
where a driving force affects the diffusion system are discussed in accordance with
the mathematical theory. The present analytical method is applicable to interdiffusion
problems of an N elements system of every material in an arbitrary thermodynamic
state. Although the physical validity of the present method is investigated by using the
diffusion data concerning the solid metals, the mathematical generality discussed here
is still kept.

The heat conduction equation proposed by Fourier in 1822 has been applied to
investigating the temperature distribution in materials [11] . In 1827, the so-called
Brown motion was found, where the self-diffusion of water was visualized by pollen
micro particle motions [2] [3] . In 1855, Fick applied the heat conduction equation to
diffusion phenomena as it had been [13] . Nevertheless, the Brown motion had not been



