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Preface

The advanced space and ground-based observations show amazing details in the
sun’s behavior providing us with invaluable information on the sun as a star and as
our own energy source. The behavior of the sun is determined by a tremendous
variety of physical phenomena acting on a wide range of spatial and temporal
scales. Every aspect requires its own specific subject studies, and a lot of work is
still needed to understand the inner workings of this fascinating things.

This book addresses one group of the phenomena: those involving finely
structured magnetic fields. It has been more than five decades since the small-scale
intense magnetic flux tubes were found to cover the huge “magnetic free” surface
of the sun outside sunspots and active regions. For the time being, the fact that all
the magnetic field of the sun from its visible surface, throughout corona, and further
to the interplanetary space has a fine filamentary structure, is well established. This
ubiquity of the magnetic flux tubes and their obvious role in a variety of processes
affecting the dynamics of the solar atmosphere and of the outflowing plasma calls
for detailed study of their properties. And yet, no book on Physics of Magnetic Flux
Tubes and their role in the dynamics of various magnetized objects has been
available.

This book is intended to fill this gap at least partly, offering the first comprehensive
account of the Physics of Magnetic Flux Tubes. The book provides side-by-side
presentation of observations and analytical theory complemented by quantitative
analysis. Many problems that are usually treated separately are presented in the book
as a coupled phenomena and are treated on the unified basis. In somie cases the author
takes a risk to point at the effects that have not yet been looked for, or may be used for
the predictability of events, and makes suggestions on what the observer should
expect and what to search for in huge banks of observational data.

A major feature of the book is the application and observational test of the
analytical theories that have not been previously considered in the context of the
solar physics. Examples are: negative energy waves that may lead to formation of
solitons propagating along flux tubes; explosive instability in the multiwave
interactions; energetically open circuit leading to understanding of the observed
variety of coronal structure formation, and others. These concepts are discussed
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viii Preface

vis-a-vis pertinent observational data. Extremely important is assessment of
collective phenomena in the ensembles of magnetic flux tubes randomly distributed
in space and over their physical parameters making the rarefied ensembles in the
quiet sun, more crowded families in plages, and dense conglomerates in sunspots
and active regions.

The book contains also examples where, conversely, the new theory develop-
ments were prompted and enabled by the observations. One can mention the
observations of continuous fragmentation of flux tubes accompanied by generation
of mass flows, which turned out to be consistent with magnetoacoustic streaming—
an effect analogous to Faraday’s acoustic streaming. Likewise, the flux tube
reconnections and post-reconnection processes that occur in high plasma beta
environment have clearly demonstrated the need for significant extensions of the
existing theory that focused on low beta coronal reconnections.

The reader will also find descriptions of such intriguing and not fully understood
phenomena as the bullwhip effect—an explosively growing amplitude of flux tube
oscillation: a greenhouse-like effect, where the temperature under the prominences
grows much higher than the expected coronal temperatures; and the effects of a
spatiotemporal echoes in the series of recurrent flares and microflares.

The work was done in Lawrence Livermore National Laboratory. The Lab’s
hospitality is greatly acknowledged. I am particularly grateful to Robert Becker,
Kem Cook, Jim Sharp, Charles Alkock, John Bradely, and David Dearborn.

I would like to thank my former colleagues from Landau’s theoretical depart-
ment, Kapitza’s Institute for Physical Problems in Moscow, where I received my
graduate degrees and worked for years on quantum vortices in superfluid Helium and
Type II superconductors. My special thanks go to my teachers Isaak Khalatnikov
(my Diploma adviser), Lev Pitaevskii, and Alexei Abrikosov, my Ph.D. advisers.

My interest in solar physics dates back to the 1970s, when I once came across an
early paper by Howard and Stenflo about small-scale magnetic flux tubes on the
sun. I was captivated by this beautiful subject. I am grateful to Jan Stenflo and
Robert Howard not only for their excellent paper, which triggered my lifetime
interest, but for all the meetings and discussions that I have had with them later.

I would like to thank Henk Spruit, Gene Parker, Bernie Roberts, and Gene
Avrett, who happened to be my first foreign correspondents in the field of solar
physics. After about a decade and a half of working on magnetic flux tubes (still
back in the Soviet Union), I realized that my results were not known in the West. |
then chose these outstanding physicists and sent them some of my offprints. All
responded. Henk Spruit immediately made me an invited speaker at the IAU
Symposium. Gene Parker was also quick, but I found out about it only seven
months later when I was summoned by the authorities and presented a huge tattered
box full of papers for identification and explanation what it all meant. It meant that
Gene Parker sent me all his papers without any note. Berny Roberts together with
Eric Priest invited me to the University of St Andrews for several weeks to work
together. I visited Gene Avrett in Harvard Smithsonian Center for Astrophysics
several times and had wonderful communications with him and other researchers in
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the CFA, especially with Shadia Habbal and Wolfgang Kalkofen, whom 1 also
thank a lot.

[ am pleased to thank all my collaborators, particularly Toshi Tajima, Barry
LaBonte, Jun-ichi Sakai, Shadia Habbal, Richard Woo, Tom Berger, Mandy
Hagenaar, and Zoe Frank. I am especially grateful to Dick Shine. Many beautiful
results obtained from observations and described in this book would not have been
here without his insight and help. )

I would like to thank Alan Title, Philip Scherrer, and Ted Tarbell for not only
being my collaborators, but also as trusting people who gave me a job at Stanford
Lockheed Institute for Space Research. No CV, no references, and no questions
were asked.

Finally, I am extremely grateful to my husband Dmitri (Mitya) Ryutov for his
patience and encouragement expressed sometimes in my native Georgian.

Livermore, CA Margarita Ryutova
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