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PREFACE

Knowledge of the metabolic processes of living organisms continues to
accumulate at a gratifying pace. A wealth of new information has been
acquired since the publication of the first edition of the work. Many miss-
ing details in the knowledge of particular intermediates and enzymes in
established cycles have now been determined. New, hitherto unsuspected
metabolic ‘patterns have been discovered for many natural compounds.
In many instances these represent alternate pathways to previously estab-
lished metabolic cycles.

The last few years have seen the discovery of specific coenzyme func-
tions for biotin and for vitamin Bi,. Important progress has been made in
the elucidation of the mechanisms of biosynthesis of the biological macro-
molecules primarily concerned with the maintenance of life processes, the
proteins, and the nucleic acids.

These advances are discussed in this work. In addition separate chap-
ters have been included on the metabolism of the carotenoids, vitamins,
and coenzymes.

The purpose of this work remains, as in the first edition, to survey the
existing knowledge of the chemical steps in the metabolism of the con-
stituents of major importance in living organisms. In the selection of
authors individuals have been chosen who are actively working in each
of the areas covered and know the subject matter from personal day-to-
day contact with it in the laboratory.

If one is led to wonder as to the reason for the change in title of these
volumes, the answer ig that the new title, “Metabolic Pathways” is
strongly appealing for its brevity and connotations of content.

Unaversity of California Davip M. GREENBERG
School of Medicine

San Francisco, California

June, 1960
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Free Energy and Entropy
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ARTHUR B. PARDEE AND LLOYD L. INGRAHAM

I. Introduction

The most useful concept that biochemists have acquired from thermo-
dynamics is that of free energy. By considering the free energy change
of a reaction one can tell whether it may proceed spontaneously or
whether it must be “driven” by other reactions. Further, one can calcu-
late the amount of energy given off by a reaction or required by it; and
this is a most important feature of many reactions. From free energy
data one can easily calculate equilibrium constants and electromotive
forces.

In this chapter, an attempt will first be made to introduce the concept
of free energy in a simple, descriptive way. The various methods of obtain-
ing free energy data will be shown. Also, this section will provide rela-
tions between free energy and other quantities of direct interest, such
as equilibrium constants, heats of reactions, and electromotive forces.
The remainder of the chapter will be devoted to applications of thermo-
dynamics which will serve to indicate areas of biochemistry in which
such information is useful. The flow of energy through photosynthesis,
assimilation into chemically stored forms such as starch, utilization of
components with production of energy-rich phosphate compounds, and,
finally, use for synthesis or work of various sorts will be mentioned. It is
hoped that this presentation will provide a basis for understanding
thermodynamic treatments in other chapters of this book and elsewhere
in biochemistry.

Entropy changes are also of interest to biochemists, since such
changes may give an insight into structural changes of the products
relative to the reactants. A final section of this chapter will deal with
applications of entropy in biochemistry.

Three types of information will be treated very briefly. I'irst, little
attempt will be made to relate free energy to other thermodynamic quan-
tities. Many excellent books and articles on thermodynamics, some espe-
cially for biochemists, have appeared and may be recommended to those
who are not familiar with the fundamental relations (1—4). Second, cer-
tain subjects such as applications of free energy in carbohydrate metabo-
lism and protein synthesis are discussed in other chapters of this book,
and therefore they will not be discussed at length in this chapter. Third,
the eventual utilization of energy for work is outside the scope of this
treatise.

ll. Free Energy and lts Determination

A. Tue NATURE oF FREg ENERGY

When we consider the energy changes involved in a reaction such as
the oxidation of glucose or in a process like the absorption of light in
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photosynthesis, we note that chemical energy is given up as heat or that
the energy of light is transformed into chemical energy. Such qualitative
statements are not nearly as useful as quantitative information. Energy
changes should be expressed quantitatively if they are to provide the
maximum information regarding a reaction. The most useful way of
expressing them is in terms of AF, the free energy change of the reaction.
One may think of free energy changes in the following way: every com-
pound may be considered to have a definite amount of free energy (F)
stored in it under any set of conditions. When certain compounds (react-
ants) are converted into other compounds (products), the difference (A)
in the free energies of products and reactants is released if the products
have less free energy than the reactants, or energy must be put in if the
opposite is the case. This difference, AF), is the free energy change of the
reaction, per mole.

AF = free energy of products — free energy of reactants

The point of greatest importance is that for the reaction to proceed
spontaneously as written, without putting in outside energy (and at
constant temperature and pressure), AF must be negative; that is, the
produects must possess less free energy than the reactants. One may say.
that reactions only go ‘““down hill” energetically of their own accord—
from compounds of higher to those of lower free energy. Processes that
have a positive AF must be supplied with free energy greater than AF
from another source if they are to proceed. They do not cccur spon-
taneously. For example, formation of pyrophosphate from phosphate
has a AF greater than 0 (49,000 cal per mole). One could treat a solution
of phosphate with catalysts like purified enzymes and the formation of
pyrophosphate would not oceur to an appreciable extent. However the
reaction in the reverse direction can occur, since AF of hydrolysis of
pyrophosphate is —9,000 cal. In the intermediate case, when AF of a
reaction is 0, the reaction tends to go equally in both directions. The
reactants and products are at equilibrium.

It might be helpful in discussing the nature of AF to mention its
close relation to the equilibrium constant and the mass action law. In
a reaction at equilibrium

L A+B=C-+D 1)

(C)(D)/(A)(B) equals K, where (C), (D), (A), and (B) are concentra-
tions and K is the equilibrium constant. When this ratio of products to
reactants equals K the reaction is at equilibrium, when it is greater than
K the reaction tends to go to the left, and when the ratio is less than K
the reaction tends to go to the right; these correspond respectively to
conditions of AF equal to 0, AF greater than 0, and AF less than 0.
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It can be seen that the AF of a reaction must depend not only on the
chemical structures of reactants and products but also on their con-
centrations, because the direction in which the reaction proceeds depends
on these concentrations. It is not necessary to record AF for all possible
concentrations since if AF is known for one set of conditions it ean be
caleulated for cthers as described below. Therefore, AF is recorded when
reactants and products are in certain standard conditions which are:
liquids or solids, pure gases at 1 atmosphere, and substances in solution
at 1 M concentration, at a definite temperature, usually 25°. Under these
conditions concentrations are defined as equal to unity. This AF is
written AF? and is called the standard free energy change. It is important
not to use AF’ in place of the AF calculated for the actual experimental
conditions because AF? has no direct application and is the wrong value.
For example, AFY of oxidation of 14 N, to NO;~ by O: equals 41780 cal,
but AF under zctual conditions in the bacterial cell is —7870 cal (5).
An organism that operated under the standard conditions at which AF?
is defined would fix little N.. The method of calculating AF from AF°
will be presented later in this chapter.

The second feature of interest is that AF is equal to the maximum
energy ‘“free’” to do work obtainable from a reaction at constant tem-
perature and pressure: for example, if a perfectly efficient man oxidized
1 mole of solid glucose with Os to CO» (gases at 1 atmosphere) and liquid
water, he could do a maximum of 688,000 cal of work because AF® of the
reaction equals — 688,000 cal. AF does not include work done by any
necessary expansion or contraction against external pressure during the
reaction—in this case the volume change from O; and glucose to equiva-
lent amounts of CO, and H,0.

AF depends only on the products and reactants and not on the reaction
pathway; for example, AF of the oxidation of glucose is the same whether
the sugar is burned in a flame or metabolized in the body so long as the
same initial and final conditions are obtained. No useful work is done
in the first case and only heat is released, but AF of the reaction is the
same, because it is equal to the maximum possible work obtainable and
not to the actual work obtained.

The maximum heat that is released by a reaction at constant pressure
is —AH, and this is not necessarily the same as the maximum possible
work, —AF. As examples, a number of compounds including trichloro-
acetic acid and ammonium suliate dissolve spontaneously in water so
AF is negative; but the solution becomes cooler, and therefore at constant
temperature heat would be absorbed, and AH must be positive. AF and
AH may differ by plus or minus several thousand calories, as in the case
of glycolysis, where AF is — 35,000 cal and AH is —24,000 cal (6), one-
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third less. The difference between AH and AF is equal to TAS where AS
is the difference in entropy of products and reactants.

AH = AF + TAS (2)
Entropy will be discussed in the final section of this chapter.

The free energy of a reaction is useful for determination of the direc-
tion of a reaction and the maximum energy yield, and in several other
ways:

1. It can be used to calculate the equilibrium constant.

2. It can be used to calculate the electromotive force of an oxidation-
reduction reaction.

3. It is useful in caleulating other thermodynamic quantities.

4. By combining AF values of several reactions AF values of new
reactions may be determined.

5. It provides a criterion for considering the possibility of occurrence
of biochemical pathways.

Thermodynamics and a knowledge of the free energy of reactions is
certainly usefu) and helpful but gives a far frem complete picture of a
biological situation. Although living systems must obey the laws of
thermodynamics, these laws do not provide all types of information;
hence, the outcome of any particular situation is difficult to predict from
thermodynamic information alone. Thermodynamics does for a bio-
chemist what a contour map without roads would do for a motorist. It -
tells him how far above or below him his destination lies, but it alone
does not tell him whether there is a road he can follow—it tells him to
where he cannot coast. Many reactions with negative AF do not proceed
at a measurable rate; for example, gasoline is quife stable at room tem-
perature in the presence of oxygen although its AF of oxidation is a large
negative number. A negative AF is thus necessary for a reaction to occur
but is not sufficient to predict whether it will occur. In other words, AF
and the rate of a reaction are not related. This is because a molecule must
obtain a certain amount of energy (activation energy) before it can react,
independent of the possibility that the entire reaction may release energy.
Enzymes are necessary to make biological reactions proceed at measur-
able rates. They do so by finding a pathway of lower elevation on the
contour map. The fact that energy-rich compounds may be unreactive
is very important because it means that the path of metabolism is not
inflexibly one that yields the most energy at each step, but instead can
lead to accumulation of compounds of high free energy content.

B. Free ENERGY oF FORMATION

. Free energy values usually are tabulated as standard free energies
of formation of the compounds. This quantity is defined as the free energy
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change of the reaction in which the compound in its standard state is
formed from the elements which compose it, in their standard states at
the specified temperature. For example, the standard free energy of
formation of solid glycine is —88,610 cal. This is the free energy change
for the reaction:

0, {1 atm) + 2 C (solid) + 4 N2 (1 atm) + 5§ H; (1 atm) —
CH:NH.COQOH (solid)

The free energies of formation of the elements are by this definition equal
to zero. Tables of free energies and illustrations of the methods of caleu-
lation are available (7—9). Methods of determining AF will be presented
in the remainder of this section.

C. DeEPeENDENCE OF AF oN CONCENTRATION

The free energy of a substance depends on concentration. Quanti-
tatively, if C'; and C, are two concentrations of a substance then 77 at C,
is related to # at C» by the free energy change of the dilution. This work
of dilution from C; to C, is equal to

RT In C2/Cy 3)

where R is the gas constant (1.987 cal/mole/degree), 7' is the absolute
temperature, and In is logarithm to the base e. Rigorously, activities
should be used in place of concentrations. (This refinement is not com-
monly used in biological work because the data are not sufficiently accu-
rate and the activities are seldom known.) For example, F of 10-7 M H*
is equal to F of 1 M H* (defined as equal to 0) plus AF of the reaction
in which 1 mole of 1 M H+ is diluted to 1 mole of 10-7 M H+. At 37°,

H* (1 M)— H* (107" M)
AF = 1410 log 1077/1 = —9870 cal

This means that 9870 cal would have to be used to compress 1 mole of
H+ from 107 liters into 1 liter of water (assuming maximal efficiency).

The logarithmie relation (Eq. 3) between AF and the concentration
change has been presented without proof; but it may seem more reason-
able if one considers the work required to compress a given amount of
gas into successively smaller volumes, for example, from 100 ml to 10 ml
and then from 10 ml to 1 ml. Although the volume change in the second
step is only 14 that of the first, the total efforts are similar since the
pressure becomes increasingly great as the volume decreases; and in fact
the amount of work is theoretically the same in the two steps. The work
would seem proportional to the per cent change in volume, and a loga-
rithmic relation satisfies this requirement.



