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Chapter 1
Introduction

It has been observed during earthquakes that adjacent building, or bridge segments,
might come into contact if the separation distance between them is not sufficient so
as to accommodate their relative movements. This phenomenon, known as the
earthquake-induced structural pounding, may lead to local damage at the contact
locations during moderate seismic excitations or may result in significant damage or
even total collapse of colliding structures in the case of severe ground motions.

The report after the Kaliningrad earthquake (21.09.2004), for example, shows
that interaction between adjacent parts of the apartment building led to spalling of
plaster at the contact locations, as can be seen in Fig. 1.1 (Zembaty et al. 2005).
Local damage at the interaction points was also observed in a number of buildings
after the Darfield earthquake of September 2, 2010 (Cole et al. 2011). Vasiliadis
and Elenas (2002) reported considerable damage at the locations of impacts due to
pounding between two different parts of a school building during the Athens
earthquake (7.09.1999). The SSK Hospital in [zmit suffered major damage during
the Kocaeli earthquake (17.08.1999) due to interactions between different parts of
the structure (Gillies et al. 2001). Extensive pounding damage was also observed in
low-rise unreinforced masonry buildings after the Christchurch earthquake of 2011
(Cole et al. 2012). It was observed after the Mexico City earthquake (19.09.1985)
that about 40 % of the damaged structures experienced some level of pounding and,
in the case of 15 % of them, pounding was identified as one of the reasons of
structural collapse (Rosenblueth and Meli 1986). During the San Fernando earth-
quake (09.02.1971), structural interactions between the main building of the Olive
View Hospital and one of its independently standing stairway towers resulted in
substantial damage and permanent tilting of the weaker stairway tower (Bertero and
Collins 1973). Over 200 pounding occurrences, involving more than 500 buildings,
were observed at locations within the distance of 90 km from the epicentre after the
Loma Prieta earthquake (17.10.1989). Structural pounding during that earthquake
was identified as the reason for collapses of some of buildings (see, for example,
Fig. 1.2) (Kasai and Maison 1997).
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2 1 Introduction

Fig. 1.1 Local damage at the
contact locations (Kaliningrad
earthquake, 2004)

The negative effects of earthquake-induced structural interactions were also
observed in the case of bridge structures. Priestley et al. (1996) reported that
impacts between the lower roadway and columns supporting the upper-level deck
of the Southern viaduct section of the China Basin during the Loma Prieta earth-
quake of 1989 resulted in significant structural damage. After the Northridge
earthquake of January 17, 1994, substantial pounding damage was observed at
expansion hinges and abutments of standing portions of bridges at the Interstate 5
and State Road 14 interchange (EERI 1995). The report after the Kobe earthquake
(17.01.1995) identifies pounding. due to fracture of bearing supports, as a reason
leading to considerable local damage at the contact points (see Fig. 1.3) and a
contribution to falling down of superstructure segments, as can be seen in Fig. 1.4
(Otsuka et al. 1996). Severe damage due to pounding between adjacent segments of
the New Surajbadi Highway Bridge was also observed during the January 26. 2001
Guijarat (India) earthquake (Singh et al. 2002).

In the case of buildings, the major factor recognised as the reason of structural
pounding is the difference in natural periods of vibrations (see Anagnostopoulos
1988; Anagnostopoulos and Spiliopoulos 1992; Maison and Kasai 1990, 1992;
Tena-Colunga et al. 1996; Karayannis and Favvata 2005a, b; Jankowski 2005, 2007,
2008; Komodromos 2008: Mahmoud and Jankowski 2009, 2011; Polycarpou and
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Fig. 1.2 Collapse of a building (Loma Prieta earthquake, 1989) (reprinted from Kasai and Maison
1997 with permission from Elsevier)

Fig. 1.3 Local damage at the ends of superstructure segments (Kobe earthquake 1995)
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Fig. 1.4 Pounding as one of the reasons for falling down of superstructure segments (Kobe
carthquake, 1995)

Komodromos 2010; Mahmoud et al. 2012, 2013; Falborski and Jankowski 2013;
Sottysik and Jankowski 2013; Polycarpou et al. 2014). The difference in mass or
stiffness makes the adjacent buildings to vibrate out-of-phase during the earthquake
and increases the probability of structural interactions (see Fig. 1.5). In contrast to
buildings, pounding in bridges is usually caused by the spatial seismic effects related
to the propagation of the seismic wave (see, for example, Jankowski et al. 1998, 2000;
Kim et al. 2000; Zanardo et al. 2002; Chouw and Hao 2005). These effects, which may
include time lag and lack of coherence of seismic wave as well as spatially varying
local soil conditions (see Der Kiureghian 1996), lead to different earthquake excita-
tions acting at different structural supports (see Fig. 1.6) resulting in the out-of-phase
vibrations of adjacent superstructure segments (Jeng and Kasai 1996; Hao and Liu
1998). Spatial seismic effects may also be responsible for earthquake-induced
pounding between buildings with spatially extended foundations (Jankowski 2009,
2012) or buildings in a row (Athanassiadou et al. 1994; Hao and Zhang 1999).

Earthquake-induced structural pounding is a complex phenomenon. often
involving plastic deformations, local cracking or crushing at the points of contact,
fracturing due to impact, friction, etc. Impact induces forces which are applied and
removed during a very short time, what initiates stress waves travelling away from
the impact location. The process of energy transfer during collision is much
complicated making the analysis of this type of problem to be highly difficult.

In spite of its complexity, the phenomenon of structural pounding during
earthquakes has recently been intensively studied applying various structural



