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Preface

These notes are based on a postgraduate course | gave on stochastic
differential equations at Edinburgh University in the spring 1982. No
previous knowledge about the subject was assumed, but the presen-
tation is based on some background in measure theory.

There are several reasons why one should learn more about
stochastic differential equations: They have a wide range of applica-
tions outside mathematics, there are many fruitful connections to
other mathematical disciplines and the subject has a rapidly develop-
ing life of its own as a fascinating research field with many interesting
unanswered questions. i

Unfortunately most of the literature about stochastic differential
equations seems to place so much emphasis on rigor and complete-
ness that is scares many nonexperts away. These notes are an attempt
to approach the subject from the nonexpert point of view: Not
knowing anything (except rumours, maybe) about a subject to start
with, what would | like to know first of all? My answer would be:

1) In what situations does the subject arise?
2) What are its essential features?
3) What are the applications and the connections to other fields?

| would not be so interested in the proof of the most general case, but
rather in an easier proof of a special case, which may give justas much
of the basic idea in the argument. And | would be willing to believe
some basic results without proof (at first stage, anyway) in order to
have time for some more basic applications.

These notes reflect this point of view. Such an approach enables
us to reach the highlights of the theory quicker and easier. Thus it is
hoped that notes may contribute to fill a gap in the existing literature.
The course is meant to be an appetizer. If it succeeds in awaking
further interest, the reader will have a large selection of excellent
literature available for the study of the whole story. Some of this
literature is listed at the back.

In the introduction we state 6 problems where stochastic differen-
tial equations play an essential role in the solution. in Chapter Il we
introduce the basic mathematical notions needed for the mathemati-
cal model of some of these problems, leading to the concept of ito
integrals in Chapter lll. In Chapter IV we develop the stochastic
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calculus (the Ito formula) and in Chapter V we use this to solve some
stochastic differential equations, including the first two problems in
the introduction. In Chapter VI we present a solution of the linear
filtering problem (of which problem 3 is an example), using the
stochastic calculus. Problem 4 is the Dirichlet problem. Although this
is purely deterministic we outline in Chapters VIl and VIIl how the
introduction of an associated Ito diffusion (i. e. solution of a stochastic
differential equation) leads to a simple, intuitive and useful stochastic

solution, which is the cornerstone of stochastic potential theory.
Problem 5 is (a discrete version of) an optimal stopping problem. in
Chapter IX we represent the state of a game at time t by an Ito diffusion
and solve the corresponding optimal stopping problem. The solution
involves potential theoretic notions, such as the generalized har-
monic extension provided by the solution of the Dirichlet problem in
Chapter VIIl. Problem 6 is a stochastic version of F. P. Ramsey's
classical control problem from 1928. In chapter X we formulate the
general stochastic control problem in terms of stochastic differential
equations, and we apply the resuits of Chapters Vil and Vill to show
that the problem can be reduced to solving the (deterministic)
Hamilton-Jacobi-Bellman equation. As an illustration we solve a
problem about optimal portfolio selection.

. After the course was first given in Edinburgh in 1982, revised and
expanded. versions were presented at Agder College, Kristiansand
and University of Oslo. Every time about half of the audience have
come from the applied section, the others being so-called “pure”
mathematicians. This fruitful combination has created a broad variety
of valuable comments, for which | am very grateful. | particularly wish
to express my gratitude to K. K. Aase L. Csink and A. M. Davie for
many useful discussions.

| wish to thank the Science and Engineering Research Council,
U.K.and Norges Aimenvitenskapelige Forskningsrad (NAVF), Norway
for their financial support. And 1 am greatly indebted to Ingrid Skram,
Agder College and Inger Prestbakken, University of Oslo for their
excellent typing - and their patience with the innumerable changes in
the manuscript during these two years.

Oslo, June 1985 : Bernt @ksendal



We have not succeeded in answering all our problems. The
answers we have found only serve to raise a whole set of
new questions. In some ways we feel we are as confused as
ever, but we believe we are confused on a higher level and
about more important things.

Posted outside the mathematics reading room,
Tromse University



Contents

.

Vi

INTRODRDIN = sy < (0BG s ot (A

Some problems (1-6) where stochastic differential
equations play htl essential role in the soiution

SOME MATHEMATICAL PRELIMINARIES . . . . . . .

Random variables, independence, stochastic
processes, Kolmogrov's extension theorem, normal
distribution, Brownianmotion. . . . .. ... ... ..

D A T R T e e ahahs

‘Mathematical interpretation of equations involving
e e L e R R R Fe T
The' O INtOGRRE: 20 s B0 i tn writl Bis st e « «
Some properties of the lto integral . . . .. . ... ...
MAGHDGRIBS . . .. . o s v SBARTEL B mcirials fh
Comparison between Ito and Stratonovich integrais

STOCHASTIC INTEGRALS AND THE ITO FORMULA

Stochastic IMearmE Ny 0 SRS S RInT S 08 | |
The Ito formula (1-dimensional) . . ... ... .. ... ..
L b S e b S St

STOCHASTIC DIFFERENTIAL EQUATIONS . . . . . . .

An example: The population growth model . . . . . .
ito’'s formula in several dimensions . . . . .. ... ..
The Bessel process and other examples . . . . . . ..
Existence and uniqueness theorem for stochastic

differential equations . . . . .. .. Lo L.

SHE FILTEAING PROBEEM . . . v oain s

Statement of theproblem . . . . .. ... .......
A very simple example (discretetime) . ... ... ..
Step 1: Y-linear and Y-measurable estimates . . . . . .

15

15
20
24
24
30

32



Xl Contents

Vil

Vil

Step 2: The innovationprocess . . . . ... ... ...
Step 3: The innovation process and Brownian motion
Step 4: An explicit formulafor X, . .. .. ... .. ..
Step 5: The stochastic differential equation for X, . . .
The Kaiman-Bucyfilter . . . . ... ... ...
T e e S R g e

DIEEUSIONS . v e Ca i e ol it e

Definition of an lto diffusion . . . . . ... ... ....
(A) The Markov property ... .o . . . «pacwene s wis
(B) The strong Markovproperty . . . . .. ... ....
(C) The infinitesimal generator - . . . . . ... .. ...
(D) The Dynkin formula and Kolmogorov's backward
U R R R e e e S Lol R
Example: Recurrence and transience of Brownian
OGN i Ll S
(E) The Feynman-Kac formula. Killing . . . . ... ..
(F) The characteristicoperator . . . . .. .......
Examples . . . ... . . e s :
(G) When is a stochastic integral a diffusion? . . . . .
An example: The Besselprocess . . . . ... ...
Which stochastic integrals are Brownian motion? .
When is a stochastic integral identical in law to an
RO AIMUSIONT - & o Sc n v s o wn s s BEOMT,
When is the image of an ito diffusion by a
C2-function again an Ito diffusion? . . . .. . ...
(H) Randomtimechange . . . . -« « - ... {5S00I0EM .
When is a stochastic integral identical in law with
a time change of an Ito diffusion? . .. ... ...
A characterization of the stochastic integrals
which are time changes of Brownian motion
A time change formula for stochastic integrals
The characteristic operator of a time changed Ito
AHEUBION. . o i v v v e et e e ey
Examples: Brownian motion on the unit sphere . .
The Levy theorem (analytic invariance
of Brownian motion) . . . . .. ... ..
() The Cameron-Martin-Girsanov formula . . . . . . .
The Cameron-Martin-Girsanov transformation . . .

APPLICATIONS TO PARTIAL DIFFERENTIAL
ERUATIORG . . e T

(A TheDifichietPreBlem . .. . . i~ ... . ..
Regular points . . . . ... o B e
Exampian - s ca g oA g e, Ty e ies

107

108
110

111
111
113
115
118



Contents Xl

. The stochastic Dirichlet problem . . . .. ... .. 128
Existence and uniqueness of solution . . . .. .. . 128
When is the solution of the stochastic Dirichlet
problem also a solution of the original Dirichlet

L e S i S S G 131

ST I e S T P S S e 134

(BT FomsonpIobiom .- . . .. . . ... 137

AMOUERRICVOIBION: . @ . . . . " ..o is 137

EXMNOROESORION = . .. .. e i 137

COREER OEBOIION . . . . . - o :o. e 139

The combined Dirichlet-Poisson problem . . . . . 139

GO EOOR BB .- . . . .. . e e e 140

IX. APPLICATION TO OPTIMAL STOPPING . . ... . .. 143

Statementottheproblem .. ... . . ... . ... .4 143

Least superharmonic majorants . . . . ... ... ... 150

Existence theorem for optimal stopping . . . . . . . . 153

Uniqueness theorem for optimal stopping . . . . . . . 157
Examples: 1) Some stopping problems for Brownian

OHON . o o e e S 159

2) Whentoquitacontest . . . ... . ... 165

3) The marriage problem . . .. .. .. .. 168

X.  APPLICATION TO STOCHASTIC CONTROL . . . ... 171

Statementottheproblem- . \. . . . . - .. U0 171

The Hamilton-Jacobi-Bellman equation . . . ... .. 174

A converse of the HJBequation . . . . . ... ... .. 177

Markov controls versus general adaptive controls . . . 179

Examples: The linear regulator problem . . . . .. .. 180

An optimal portfolio selection problem . . 184

APPENDIX A: NORMAL RANDOM VARIABLES . . . . . . .. 189

APPENDIX B: CONDITIONAL EXPECTATIONS . . . .. ... 193

o T e (i e S St S (e s L s 195



| Iﬁtroduction

To convince the reader that stochastic differential equations is
an impcortant subject let us mention some situations where such

eguations appear and can be used:

(A) Stochastic analogs of classical difference and differential

equations

If we allow for some randomness in some of the coefficients of a
difference or differential equation we often obtain a more

realistic mathematical modél of the situation.

PROBLEM 1. Consider the simple population growth model

1.1 . aeN e N0) = A

where N(t) 1is the size of the population at time t , and
alt) 1is the relative rate of growth at time t .
It might happen thaﬁ a(t) is not completely known, but subject

to some random environmental effects, so0 that we have
a(t) = r(t) + "noise" ,

where we do not know the exact behaviour of the noise term, only
its probability distribution.

How do . we solve (1.1) in this case?
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PROBLEM 2. The charge Q(t) at time t at a fixed point in an
electric circuit satisfies the differential

equation

(1.2)  LeQ"(t) + R-Q'(t) + 3-Q(t) = F(t), Q(0) = 0y, Q' (0) = I,

where L 1is inductance, R 1is resistance, C is capacitance

and F(t) the potential source at time t.

Again we may have a situation where some of the coefficients,
say F(t) , are not deterministic but of the form
F(t) = G(t) + "noise"” .

How do we solve (1.2) in this case?

(B) Filtering problems

It is clear that any solution of the stochastic equations in
Problem 1 and 2 must involve some randomness, i.e. we can only
hope to be able to say something about the probability

distributions of the solutions.

'

PROBLEM 3. Suppose that we, in order to improve our knowledge'

about the solution, say of Example 2, perform observations
(1.3) z(tl), ¥4 ey z(tn)

of Q at times tl' ey tn' However, due to inaccuracies in
our measurements we do not really measure Q(tk) but a
disturbed version of it:

(1.4) z(tk) = Q(tk) + "noise"

So in this case the noise term comes from the error of

measurement.
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The problem is: What is the best estimate of Q(t) satisfying

(1.2), based on the observations (1.4), where t > tn ? ;

£t > tn this is called a prediction problem, if ¢t = tn it

is called a filtering problem.

In 1960 Kalman and in 1961 Kalman and Bucy proved what is now
known as the Kalman-Bucy filter. Basically the filter gives a
procedure for estimating the state of a system which satisfies

a "noisy" linear differential equation, based on a series of
"noisy" observations. ' ; :

Almost immediately the discovery found applications in aerospace
engineering (Ranger, Mariner, Apollo etc.) and it now has a

broad range of applications.

Thus the Kalman-Bucy filter is an example of a recent mathematical
discovery which has already proved to be useful - it is not just

"potentially" useful.

It is also a counterexample to the assertion that "applied
mathematics is bad mathematics" and to the assertion that "the
only really useful mathematics is the elementary mathematics".
For the Kalman-Bucy filter - as the whole subject of stochastic
differential equations -~ involves advanced, interesting and

first class mathematics.
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(C) sStochastic qppro;ch to deterministic ‘boundary value préblems

PROBLEM 4. The most celebrated example is the stochastic

solution of the Dirichlet problem:

Given a (reasonable) domain U in R" and a continuous
function £ on the boundary of U , 3U.

"
Find a function ¥ continuous on the closure U of U

such that

(1) 7= ¥ = £-ion =2U

(ii) ¥ is harmonic in U § 2dae

B aie
Af = X R 2 0 dn- Wy
i=1 ax;

In 1944 Kakutani proved that the solution could be expressed in
l terms of Brownian motion:

?(x) is the expected value of f at the first exit point from

U of the Brownian motion starting at x € U .

;

It turned out that this &as just the tip of an iceberg: For a

large class of semielliptic an order partial differential

equations the corresponding Dirichlet boundary value problem can
: be solved using stochastic processes which are solutions of

associated stochastic differential equations.

(D) - Optimal stopping

PROBLEMFS. A participant in a contest is given a sequence of
question;. If he gives the right answer to a question, he gets
‘a reward plﬁs the option of proceeding to the next guestion or
withdraw from the contest (wiéh the money he has received so

,far). 'If he cannot answer a question correctly he looses all
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the money he has received and he is out of the contest. Suppose
that for each question there is a probability p that he can
answer the question. When is the best time for the contestant
to stop the game? What is the expected gain when stopping at

such an optimal time?

This is (a discrete version of) an optimal stopping problem. It
turns out that the solution can be expressed in terms of the
solution of a corresponding generalized Dirichlet prcblem

mentioned above.

(E) Stochastic control

PROBLEM 6. A stochastic analog of the "How much should a nation
save?"-problem of F.P. Ramsey from 1928 (see [21]) in economics
is the following:

The basic economic quantities are

K(t) = capital at time t

L(t) = labour at time t

P(t) = production rate at time ¢t

'C(t) = consumption rate at time t

U(C)At = the "utility" obtained by consuming goods at the

consumption rate C during the time interval At .

Let us assume that the relation between K(t), L(t) and P(t) |is

of the Cobb-Douglas form:
(1.5) P(t) = AK()°L()® ,

where A, a, B are constants.

Further, assume that

(1.6) E=r) - e
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and

‘ ayr, & ¥
5,.'\(1.7) %" a(t) ]_:‘(t)4 ’ o |
where a(t) = r(t) + "noise" is the rate of growth of the

population (labbur) (see Example 1.1).

Given a utility function U and a "bequest" function 1,
the problem is to determine at each time t the size of
the consumption rate Cit) which maximizes the expected
value of the tdtal utility up to a future time T < =:

: T :
(1.8) max {E[f v(c(t))e tat] + y(k(T))}
0 -

where p is a discounting factor.



Il. Some Mathématical Preliminaries

Having stated the problems we would like to solve, we now proceed
to find reasonable mathematical notions corresponding to the
quantities mentioned and mathematical models for the problems.

In short, here is a first list of the noticns that need a

mathematical interpretation:

(1) A random quantity

(2) Independence

(3) Parametrized (discrete or continuous) families of
random quantities

(4) What is meant by a "best" estimate in the filtering
problem (Example 3)?

(5) What is meant by an estimate "based on" some
observations (Example 3)?

(6) What is the mathematiéal interpretation of the "noise"
terms?

(7) What is the matgematical interpretation of the stdchastic

differential equations?

In this chapter we will discuss (1) - (3) briefly. In the next
chapter (III) we will consider (6), which leads to the notion of
an Ito stochastic integral (7).

In chapters IV, V we consider the solution of stochastic
differential equations and then return to a solution of Example 1.
In chapter VI we consider (4) and (5) and sketch the Kalman-Bucy
solution to the li;ear filtering problem.

In chapter VII we investigate further the properties of a

solution of a stochastic differential equation.

Then in chapters VIII,IX and X this is applied to solve the
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generalized Dirichlet problem, optimal stopping problems

and stochastic control problems, respectively.

The mathematical model for a random quantity is a random variable:

DEFINITION 2.1. A random variable is a ?-measurable function

Xigal » Rn, where (2,F,P) is a probability space.

(F is a o-algebra of subsets of @, P 1is a probability
measure on {, assigning values in [0,1] to each member of F,
B Borel set in R" => X_l(B) €¥.)

Every random variable induces a measure Uy ©On an, defined by
el
Hy(B) = P(X""(B)) .

My is called the distribution of X.

The mathematical model for independence is the following:

DEFINITION 2.2. Two subsets A, B € F are called independent if

P(A N B) = P(A) - P(B) .
@
A collection A = {ot, ; i € I} of families O, of measurable

sets is/are independent if

B SR L ) e e
1 iy dxiy iy

P(Ai

for all chcices of A T $EIE ...., A €01 -
o T .

-

The - o-algebra Otx induced by a random variable X is

Ot, = {(x1(s) ; Be®) ,
X

where 8 is the Borel o-algebra on R" .

A collection of random variables {xi ; 1 € 1} are independent

if the collection of induced o-algebras Otx are independent.
* i



