closed walks
sectralurshheery. ponnegative matrices

directed graphs

Matrix %
Inequalities for
Iterative Systems

Hanjo Taubig

SSSSSSSSSSSSSSSSSSSSSS



Matrix Inequalities

for

Iterative Systems

Hanjo Taubig

Department of Computer Science
Technische Universitdt Miinchen
Garching, Germany

CRC Press
Taylor & Francis Group
Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an Informa business

A SCIENCE PUBLISHERS BOOK




CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, FL 33487-2742

© 2017 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20160819

International Standard Book Number-13: 978-1-4987-7777-3 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users, For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Tdubig, Hanjo, 1975- | Hou, Xu (Engineer), editor.

Title: Matrix inequalities for iterative systems / Hanjo Tdubig, Department
-of Computer Science, Technische Universitdt Miinchen, Garching, Germany,
Design, Fabrication, Properties, and Applications of Smart and Advanced
Materials ; editor, Xu Hou, Harvard University, School of Engineering and
Applied Sciences,

Description: Boca Raton, FL : CRC Press, 2017. | “A science publishers book.”
| Includes bibliographical references and index.

Identifiers: LCCN 2016030679| ISBN 9781498777773 (hardback) | ISBN
9781498777797 (e-book)

Subjects: LCSH: Matrix inequalities.

Classification: LCC QA188 .T36 2017 | DDC 512.9/434--dc23

LC record available at https://lccn.loc.gov/2016030679

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

MIX
Paper from

Printed and bound in Great Britain by FSC onsible saurces
TJ International Ltd, Padstow, Cornwall wmicay FSC* C013056




Matrix Inequalities

for

Iterative Systems



o, B SE BEPDRIE Ui H) : www. ertongbook. com



To my parents
Brigitte and Klaus Tdubig






Acknowledgments

It seems to me shallow and arrogant for any man in these times to claim he is completely self-made,
that he owes all his success to his own unaided efforts. Many hands and hearts and minds generally

contribute to anyone s notable achievements.
Walt Disney

First of all, I want to thank Prof. Ernst Mayr for the generous support through all the years and for
providing me with the freedom to work on whatever seemed to be interesting to me. I am also deeply
indebted to all the other people that contributed to the work on the number of walks, especially
the members of our “NetLEA” group (consisting of Sven Kosub, Klaus Holzapfel, Moritz Maaf,
Alexander Offtermatt-Souza, and me). When we started in spring of 2002 to work on spectral graph
theory, we made an attempt to prove our first conjectures. Some of these early ideas are still at the
heart of the proofs for the much more general statements that we showed only recently. Numerous
important ideas, in particular for the only long and complex proof in this work, were contributed by
Jeremias Weihmann. [ am thankful for his contributions and for all the fruitful discussions that we
had. 1 am also grateful for all the hints that I got from Raymond Hemmecke, Thomas Kahle, David
Reeb, Werner Meixner, and from my brother Holger T4ubig. For quite recent interesting remarks
and discussions, I am thankful to Tamas Réti. For proofreading a draft of this work, I am indebted
to Moritz Fuchs.

It was a great pleasure to meet the real experts at the Conference on Applications of Graph
Spectra in Computer Science (Barcelona, 2012) and at the Conference on Algebraic Combinatorics:
Spectral Graph Theory, Erdés-Ko-Rado Theorems and Quantum Information Theory, a conference
to celebrate the work of Chris Godsil (Waterloo, 2014).

Furthermore, | want to thank all the other people that I had the pleasure to work with, in
particular, all the members of the efficient algorithms group at TUM (especially Riko Jacob, Christian
Scheideler, Stefan Schmid, and Harald Réicke).

Kind regards go to the members of my ProLehre teaching course and to our coaches Barbara
Greese, Hans-Christoph Bartscherer, Pit Forster, and Adi Winteler.






Preface

Our interest for the topic was attracted by a conjecture that was brought up by our colleague Sven
Kosub. While we did not make much progress in proving the conjecture at the beginning (because it
was wrong), it turned out later, that one of the first ideas for proving a certain special case was still at
the heart of the more general results that were obtained only recently by Jeremias Weihmann and the
author of this book.

This book is based on the author’s habilitation thesis [Tdul5a]. The main goal of the habilitation
process is to develop and prove the ability to teach. As such, the aim of the book is to present the
topic in such a way that the results and their underlying methods of proof can be used by the reader
in the easiest possible way. To this end, our work tries to unify the various inequalities for the
number of walks in graphs and for the sum of entries of matrix powers in a generalized form. These
generalizations reveal the fundamental principles underlying the different results.

To the best of our knowledge all the results claimed to be new, in this work, have never appeared
before. During the whole time of working on this subject, we found many examples of results that
were (re)discovered more than just once. But in view of the large list of references, we can probably
claim that we did a thorough job for finding most of the relevant literature. In any case, the focus of
this book is not only on the collection, but also on the systematization of the vast number of results.
We have generalized and unified the related results, and put them into a common frame and discussed
their relations. In conclusion, we hope to contribute to a deeper understanding of the origin of the
different inequalities for matrix powers and the number of walks in graphs. Our main goal is thus a
clear presentation of the common principles underlying the tremendous number of different results.

Almost all of the proofs in this book are elementary. While it is normal to be satisfied with an
arbitrary complex proof for a certain statement, it must be emphasized that elementary proofs (even
for known results) have an additional value because they are instructive and convincing.

Most of the results in this book have been published in the following articles and reports:
[HKM+11; HKM+12; Tdul12; TW12; TWK+13; TW14; Tdu14; T4ul5b].
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Symbol Description

AlX, Y]
A[X]

AT
A*

r(d),r,
)¢
tr(4)
p(A4)

{(x,»)

[

x(S)

matrix with entries a, usually
square of size n x n

submatrix of 4 induced by row
index set X and column index set Y

principal submatrix of 4 induced
by row and column index set X

transpose of A
conjugate transpose of 4

matrix entry that resides in
row { and column j

n * n identity matrix
sum of all entries of 4

row sum of the entries in row /
of the given matrix A

column sum of the entries in
column ; of the given matrix A

trace of matrix 4 (sum of main
diagonal entries)

spectral radius of 4
(standard) inner product of vectors
x and y

(Euclidean) length of vector x

n-dimensional all-ones vector

characteristic vector of set S

din(u)
d,,(v)

out

p(G)
wix, y)

graph, usually with vertex set V
and edge set £

vertex set of a graph
edge set of a graph

in-degree of vertex v
out-degree of vertex v
maximum degree

edge density of the graph G

number of walks of length &
starting at vertex x and ending
at vertex y

number of walks of length &
starting at vertex x

number of walks of length &
ending at vertex x
replacement for 5,(x) and e,(x)
in undirected graphs

total number of walks of
length £ in a given graph

total number of closed walks of
length k& in a given graph
number of closed walks of
length k starting at vertex x

total number of nonreturning
walks of length k in a given
graph
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