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Preface

After the fifth edition of this textbook
appeared in print in September of 2011 and 1
had the chance to use it for instruction, a
wide variety of external and self-generated
critical commentary was collected to begin
the planning for this sixth edition. First of all,
I would like the thank all of the book’s
readers and reviewers worldwide who pro-
vided commentary, noted deficiencies, rec-
ommended changes, and identified errors. 1
have done my best to correct the errors and
balance your many fine suggestions against
the available time for revisions and the
desire to keep the printed text approximately
the same length while effectively presenting
this subject to students at the advanced-
undergraduate or beginning-graduate level.
To this end, 1 hope this book’s readership
continues to send suggestions, constructive
criticism, and notification of needed correc-
tions for this 6th Edition of Fluid Mechanics.

Fluid mechanics is a traditional field with a
long history. Therefore, a textbook such as
this should serve as a compendium of estab-
lished results that is accessible to modern
scientists, engineers, mathematicians, and
others seeking fluid mechanics knowledge.
Thus, the changes made in the revision were
undertaken in the hope of progressing to-
ward this goal. In the collected commentary
about the 5th Edition, the most common
recommendation for the 6th Edition was the
inclusion of more examples and more exer-
cises. Thus, over 100 new examples and 110
new exercises, plus nearly 100 new figures,
have been added. From a pedagogical
standpoint, the new examples may have the

most value since they allowed succinct and
self-contained expansion of the book’s con-
tent. While the sophistication and length of
the new examples varies widely, all are
intended to illustrate how the various
concepts and equations can be applied in
circumstances that hopefully appeal to the
book’s readers. An equally, or perhaps more,
important change from the 5th Edition is the
completely new chapter on computational
fluid dynamics (CFD) authored by Prof.
Grétar Tryggvason of the University of Notre
Dame (Viola D. Hank Professor and Chair of
the Department of Aerospace and Mechanical
Engineering, and Editor-in-Chief of the Jour-
nal of Computational Physics). This new CFD
chapter includes sample MATLAB'™ codes
and 20 exercises. Plus, it has been moved
forward in the chapter ordering from tenth to
sixth to facilitate instruction using numerical
examples and approaches for the topics
covered in Chapters 7 to 15. To accommodate
all the new examples and the new CFD
chapter, the final chapter of the 5th Edition on
biofluid mechanics has been moved to the
book’s companion website (go to http://
store.elsevier.com /9780124059351, under the
“Resources” tab at the bottom of the page).
Otherwise, the organization, topics, and
mathematical level of the 5th Edition have
been retained, so instructors who have made
prior use of this text should easily be able to
adopt the 6th Edition.

There have been a number of other changes
as well. Elementary kinetic theory has been
added to Chapter 1. Several paragraphs on
non-Newtonian constitutive relationships and
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flow phenomena have been added to Chapter
4, and the discussions of boundary conditions
and dynamic similarity therein have been
revised and expanded. A description of flow in
a circular tube with an oscillating pressure
gradient has been added to Chapter 9 and a
tabulation of the Blasius boundary layer profile
has been added to Chapter 10. New materials
on internal and external rough-wall turbulent
flows, and Reynolds-stress closure models
have been added to Chapter 12. The presen-
tation of equations in Chapter 13 has been
revised in the hope of achieving better cohe-
sion within the chapter. The acoustics section
of Chapter 15 has been revised to highlight
acoustic source terms, and a section on un-
steady one-dimensional gas dynamics has
been added to this chapter, too. In addition,
some notation changes have been made: the
comma notation for derivatives has been
dropped, and the total stress tensor, viscous
stress tensor, and wall shear stress are now
denoted by Tj;, 7;, and 1y, respectively. Un-
fortunately, (my) time constraints have pushed
the requested addition of new sections on
micro-fluid mechanics, wind turbines, and
drag reduction technologies off to the 7th
Edition.

Prior users of the text will no doubt notice
that the Multi-media Fluid Mechanics DVD
from Cambridge University Press is no longer
co-packaged with this text. However, a cross
listing of chapter sections with the DVD’s
outline is now provided on the textbook’s
companion website (see http:/ /store.elsevier.
com/9780124059351). Other resources can
be found there, too, such as: the errata sheets
for the 5th and 6th Editions, and (as mentioned
above) the sixteenth chapter on biofluid me-
chanics. Plus, for instructors, solutions for
all 500+ exercises are available (requires
registration at http:/ /textbooks.elsevier.com/
9780124059351).

And finally, responsible stewardship and
presentation of this material is my primary
goal. Thus, 1 welcome the opportunity to
correct any errors you find, to hear your
opinion of how this book might be
improved, and to include topics and exer-
cises you might suggest; just contact me at
drd@umich.edu.

David R. Dowling, Ann Arbor,
Michigan, August 2014
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Nomenclature

NOTATION (RELEVANT EQUATION NUMBERS
APPEAR IN PARENTHESES)

f= principle-axis version of f, background
or quiescent-fluid value of f, or average or
ensemble average of f, Darcy friction factor
(12.101, 12.102)

f = complex amplitude of f
f = full field value of f
f" = derivative of f with respect to its

argument, or perturbation of f from its
reference state

f* = complex conjugate of f, or the value
of f at the sonic condition

f' = the dimensionless, law-of-the-wall
value of f

[z = df/ 9% (6.105)

fer = critical value of f

faw = average value of f
fc1 = centerline value of f

fi = the j™ component of the vector f,
f at location j (6.14)

y (j: )l:'?;fi” = fat time n at horizontal x-location
j (6-13)

fij = the i-j component of the second order
tensor f

fity f)i; = f at time n at horizontal
x-location i and vertical y-location j (6.52,
Fig. 6.10)

fr = rough-wall value of f
fs = smooth-wall value of f

fo = reference, surface, or stagnation
value of f

f« = reference value of f or value of f far
away from the point of interest

Af = change in f

SYMBOLS (RELEVANT
EQUATION NUMBERS
APPEAR IN PARENTHESES)

« = contact angle (Fig. 1.8), thermal
expansion coefficient (1.26), angle of rota-
tion, iteration number (6.57), angle of attack
(Fig. 14.6)

a — triangular area, cylinder radius,
sphere radius, amplitude

xvii
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= generic vector, Lagrangian accelera-
ho (3.1)

A = generic second-order (or higher)
tensor

A, A = a constant, an amplitude, area,
surface, surface of a material volume, plan-
form area of a wing

A* = control surface, sonic throat area

A, = Avogadro’s number

Ay = reference area

Aj; = representative second-order tensor

B = angle of rotation, coefficient of density
change due to salinity or other constituent,
convergence acceleration parameter (6.57),

variation of the Coriolis frequency with lati-
tude (13.10), camber parameter (Fig. 14.13)

b = generic vector, control surface veloc-

y (Fig. 3.20)

B, B = a constant, Bernoulli function
(4.70), log-law intercept parameter (12.88)

B, Bjj = generic second-order (or higher)
tensor

Bo = Bond number (4.118)

¢ —= speed of sound (1.25, 15.1h), phase
speed (8.4), chord length (14.2, Figs. 14.2, 14.6)

¢ = phase velocity vector (8.8)

g, €g = group velocity magnitude (8.67)
and vector (8.141)

x = scalar stream function (Fig. 4.1)

NOMENCLATURE

°C = degrees centigrade

C = a generic constant,
length, closed contour

hypotenuse

Ca — Capillary number (4.119)
Cy = skin friction coefficient (10.15, 10.32)
C, = pressure (coefficient) (4.106, 7.32)

cp = specific heat capacity at constant
pressure (1.20)

Cp = coefficient of drag (4.107, 10.33)
C; = coefficient of lift (4.108)

¢y = specific heat capacity at constant
volume (1.21)

Cjj = matrix of direction cosines between
original and rotated coordinate system axes
(2.5)

C, = Characteristic curves along which
the [. invariants are constant (15.57)

d — diameter, distance, fluid layer depth

d - dipole strength vector (7.28),

displacement vector

6 = Dirac delta function (B.4.1), similarity-
variable length scale (9.32), boundary-layer
thickness, generic length scale, small incre-
ment, flow deflection angle (15.64)

6 — average boundary-layer thickness

* — boundary-layer displacement thick-
ness (10.16)

6;; = Kronecker delta function (2.16)



NOMENCLATURE Xix

dg9 = 99% layer thickness

D = distance, drag force, diffusion coef-
ficient (6.10)

D = drag force vector (Example 14.1)
D; = lift-induced drag (14.15)

D/Dt = material derivative (3.4), (3.5),
or (B.1.4)

Dt = turbulent diffusivity of particles
(12.156)

D = generalized field derivative (2.31)

¢ — roughness height, kinetic energy

dissipation rate (4.58), a small distance, fine-
ness ratio h/L (9.14), downwash angle (14.14)

£ — average dissipation rate of the turbu-
lent kinetic energy (12.47)

£r — average dissipation rate of the vari-
ance of temperature fluctuations (12.141)

g = alternating tensor (2.18)
¢ — internal energy per unit mass (1.16)
e; = unit vector in the i-direction (2.1)

¢ = average kinetic energy of turbulent
fluctuations (12.47)

Ec = Eckert number (4.115)

Ex = kinetic energy per unit horizontal
area (8.39)

Ep = potential energy per unit horizontal
area (8.41)

E = numerical error (6.21), average energy
per unit horizontal area (8.42), Ekman
number (13.18)

E = kinetic energy of the average flow
(12.46)

EF — time average energy flux per unit
length of wave crest (8.43)

f = generic function, Maxwell distribution
function (1.1) and (1.4), Helmholtz free en-
ergy per unit mass, longitudinal correlation
coefficient (12.38), Coriolis frequency (13.6),
dimensionless friction parameter (15.45)

f = Darcy friction factor (12.101, 12.102)

fi = unsteady body force distribution (15.5)

¢ = velocity potential (7.10), an angle

f — surface force vector per unit area
(2.15, 4.13)

F = force magnitude, generic flow field
property, generic flux, generic or profile
function

Fr = perimeter friction force (15.25)

F = force vector, average wave energy
flux vector (8.157)

& — body force potential (4.18), undeter-
mined spectrum function (12.53)

Fp, Fp = drag force (4.107), average drag
force

F; = lift force (4.108)

Fr = Froude number (4.104)



XX NOMENCLATURE

vy = ratio of specific heats (1.30), velocity
gradient, vortex sheet strength, generic
dependent-field variable

v = shear rate
g — body force per unit mass (4.13)
g = acceleration of gravity, undetermined

function, transverse correlation coefficient
(12.38)

~

g = reduced gravity (8.116)

I = vertical temperature gradient or lapse
rate, circulation (3.18)

I’y = adiabatic vertical
gradient (1.36)

temperature

I, = circulation due to the absolute

vorticity (5.29)

G =
function

gravitational constant, profile

G, = Fourier series coefficient
G = center of mass, center of vorticity

h = enthalpy per unit mass (1.19), height,
gap height, viscous layer thickness

h— Planck’s constant

n = free surface shape, waveform, simi-
larity variable (9.25) or (9.32), Kolmogorov
microscale (12.50)

n1 = Batchelor microscale (12.143)

H = atmospheric scale height, water

depth, step function, shape factor (10.46),
profile function

i = an index, imaginary root

I = incident light intensity, bending
moment of inertia

I = Invariants along the C, characteris-
tics (15.55)

j = an index

] = Jacobian of a transformation (6.110),
momentum flux per unit span (10.58)

ls -
(12.62)

jet momentum flux per unit span

Ji = Bessel function of order i
Jin = diffusive mass flux vector (1.7)

¢ — a function, azimuthal angle in cylin-
drical and spherical coordinates (Fig. 3.3)

k — thermal conductivity (1.8), an index,
wave number (6.12) or (8.2), wave number

component

k = thermal diffusivity, von Karman
constant (12.88)

ks — diffusivity of salt
k7 = turbulent thermal diffusivity (12.116)

ky = mass diffusivity of a passive scalar in
Fick’s law (1.7)

Ky — turbulent mass diffusivity (12.117)
kg = Boltzmann’s constant (1.27)
k; = sand grain roughness height

Kn — Knudsen number
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K = a generic constant, magnitude of the
wave number vector (8.6), lift curve slope
(14.16)

K — degrees Kelvin

K = wave number vector (8.5)

I = molecular mean free path (1.6), span-
wise dimension, generic length scale, wave
number component (8.5, 8.6), shear correla-
tion in Thwaites method (10.45), length scale
in turbulent flow

It = mixing length (12.119)

L, L = generic length dimension, generic
length scale, lift force

Ly = Monin-Obukhov  length scale
(12.138)

A = wavelength (8.1, 8.7), laminar
boundary-layer correlation parameter (10.44)

Am = wavelength of the minimum phase
speed

A+ = temporal Taylor microscale (12.19)

A Ag = longitudinal and lateral spatial
Taylor microscales (12.39)

A = lubrication-flow bearing number
(9.16), Rossby radius of deformation, wing

aspect ratio (14.1)

Ap Ay = longitudinal and lateral integral
spatial scales (12.39)

Ay — integral time scale (12.18)

u = dynamic or shear viscosity (1.9),
Mach angle (15.60)

w, = bulk viscosity (4.36)

m = molecular mass (1.1), generic mass,
an index, moment order (12.1), wave number
component (8.5, 8.6)

M, M = generic mass dimension, mass,
Mach number (4.111), apparent or added
mass (7.108)

M, = molecular weight

n = molecular density (1.1), an index,
generic integer number, power law exponent
(4.37)

n — normal unit vector

ns — index of refraction

N = number of molecules (1.27), Brunt-
Viisild or buoyancy frequency (1.35, 8.126),
number

Nj; = pressure rate of strain tensor (12.131)

v = kinematic viscosity (1.10), cyclic fre-
quency, Prandtl-Meyer function (15.67)

vy = turbulent kinematic viscosity (12.115)
O = origin

p = pressure

p = t x n, third unit vector

Patm = atmospheric pressure

pi — inside pressure

p, = outside pressure

po = reference pressure at z = 0
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p. = reference pressure far upstream or
far away

p — average or quiescent pressure in a
stratified fluid

P = average pressure

I1 = wake strength parameter (12.95)

Pr = Prandtl number (4.116)

q = heat added to a system (1.16), volume
flux per unit span, unsteady volume source

(15.4), dimensionless heat addition param-
eter (15.45)

q, 9; = heat flux (1.8)

q = generic acoustic source (15.8)

gs = two-dimensional point source or sink
strength in ideal flow (7.13)

qn — generic parameter in dimensional
analysis (1.42)

Q = volume flux in two or three di-
mensions, heat added per unit mass (15.21)

# = potential temperature (1.37), unit of
temperature, angle in polar coordinates,
momentum thickness (10.17), local phase, an
angle

p = mass density (1.7)

ps = static density profile in stratified
environment

pm = mass density of a mixture

p = average or quiescent density in a

stratified fluid

NOMENCLATURE

pp = potential density (1.39)

r = matrix rank, distance from the origin,
distance from the axis

r — particle trajectory (3.1), (3.8)

R = distance from the cylindrical axis,
radius of curvature, gas constant (1.29),
generic nonlinearity parameter

Ra = dimensionless grid-resolution (6.42)

R, = universal gas constant (1.28)

R; = radius of curvature in direction 7 (1.11)

R, R;; = rotation tensor (3.13), correlation
tensor (12.12), (12.23)

Ra = Rayleigh number (11.21)
Re = Reynolds number (4.103)

Ri = Richardson number,
Richardson number (11.66, 12.136)

gradient

Rf = flux Richardson number (12.135)
Ro = Rossby number (13.13)

o — surface tension (1.11), interfacial ten-
sion, vortex core size (3.28, 3.29), temporal
growth rate (11.1), oblique shock angle
(Fig. 15.21)

s = entropy (1.22), arc length, salinity,
wingspan (14.1), dimensionless arc length

o, — standard deviation of molecular
velocities (1.3)

S = salinity, scattered light intensity, an
area, entropy



NOMENCLATURE

S, = one-dimensional temporal longitu-
dinal energy spectrum (12.20)

S11 = one-dimensional spatial longitudi-
nal energy spectrum (12.45)

St = one-dimensional temperature fluc-
tuation spectrum (12.142), (12.143)

S, §j; = strain rate tensor (3.12), symmetric
tensor

St = Strouhal number (4.102)
t = time
t = tangent vector

T, T = temperature (1.1), generic time
dimension, period

T, Tjj = stress tensor (2.15), (Fig. 2.4)
Ta = Taylor number (11.52)

T, = free stream temperature

Ty = wall temperature

7 = shear stress (1.9), time lag

T, Tjj = viscous stress tensor (4.27)
1, = wall or surface shear stress

v = specific volume = 1/p

u = horizontal component of fluid veloc-
ity (1.9)

u = generic vector, average molecular
velocity vector (1.1), fluid velocity vector (3.1)

u; = fluid velocity components, fluctu-
ating velocity components

xxiii
u+ = friction velocity (12.81)
U = generic uniform velocity vector

u, =
components

ensemble average velocity

U = generic velocity, average stream-wise
velocity

AU = characteristic velocity difference

U, = local free-stream flow speed above a
boundary layer (10.11), flow speed at the
effective angle of attack

Ucp = centerline velocity (12.56)

U = flow speed far upstream or far away

v = molecular speed (1.4), component of
fluid velocity along the y axis

v = molecular velocity vector (1.1),
generic vector

V = volume, material volume, average
stream-normal velocity, average velocity,
complex velocity

V* = control volume

w = vertical component of fluid velocity,
complex potential (7.42), downwash velocity
(14.13)

W = thermodynamic work per unit mass,
wake function

W = rate of energy input from the average
flow (12.49)

We = Weber number (4.117)

w = temporal frequency (8.2)



