Tal Hassner - Ce Liu Editors

Dense Image
Correspondences
for Computer
Vision

@ Springer



Tal Hassner ¢ Ce Liu
Editors

Dense Image
Correspondences
for Computer Vision

@ Springer



Editors

Tal Hassner Ce Liu
Department of Mathematics Google Research
and Computer Science Cambridge, MA, USA

The Open University of Israel
Raanana, Israel

ISBN 978-3-319-23047-4 ISBN 978-3-319-23048-1 (eBook)
DOI 10.1007/978-3-319-23048- 1

Library of Congress Control Number: 2015953102

Springer Cham Heidelberg New York Dordrecht London

© Springer International Publishing Switzerland 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.
springer.com)



To my wife, Osnat, and my children, Ben,
Ella, Daniel, and May

With love beyond words

- TH.

To my wife, Irene, and my daughter, Mary
-C.L.



AR, T B 5E#EPDEIE 7 1A) : www. ertongbook. com



Preface

Correspondence estimation is a task of matching pixels of one image with those
of another. When referring to dense correspondence estimation, the emphasis is on
finding suitable matches (correspondences) for every one of those pixels.

Throughout much of the history of computer vision as a field of research, work
on dense correspondence estimation has mostly been motivated by two specific
problems: stereo vision, in which the pixels in one view of a 3D scene are matched
with pixels in another view of the same scene to determine displacements and reason
about 3D structure; and optical flow, in which the two images are taken from the
same camera, but at different points in time. Many solutions have been offered for
both these tasks, varying in their algorithmic design or the assumptions they make
on the nature of the scene and imaging conditions. Implicit in most, however, is
the same scene assumption: that is, that the two images involved capture the same
physical scene, with possible differences due to independent scene motion.

This assumption plays an important role in defining the criteria for how pixels
should be matched. If the same scene is visible in both images, then any physical
scene point is expected to appear the same in both views. This similar appearance
can therefore be used to match the pixels which capture its appearance in both
images. Classical optical flow methods often make this concrete by using the
brightness constancy assumption which interprets similar appearance as similar
local patterns of pixel intensities.

In recent years, however, there has been a growing interest in breaking away from
this same scene assumption and designing methods for correspondence estimation
even in cases where the two images capture entirely different scenes. The rational
for doing so is not entirely obvious and requires some explanation. For one thing,
matching pixels between images of different scenes implies a harder problem: If
the two images present different scenes, a physical point appearing in one image
will obviously not appear in the other image and in particular cannot be expected
to appear the same in both images. Therefore, the brightness constancy assumption
cannot be applied in such cases and new criteria must be established in order to
determine when two pixels actually match.
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But even if correspondences could reliably be established even under these
challenging circumstances, there is still the question of why this would even make
sense. It is not immediately obvious what disparities can say about scene structure
when two scenes are involved. Similarly, both scene and camera motion are not
necessarily meaningful in such cases.

This book is intended to present the problem, solutions and applications of
dense correspondence estimation with a particular emphasis on cross scene cor-
respondences. Its chapters tackle the two issues raised above: first, by describ-
ing techniques designed to enable correspondence estimation under increasingly
challenging conditions and second, by showing what can be done with these
correspondences. The book is accordingly divided into the following two parts.

In Partl, we focus on how dense correspondences may be estimated. Chap-
ter “Introduction to Dense Optical Flow” provides a survey of classical optical flow
methods with an emphasis on the pioneering work of Horn/Schunck. Chapter “SIFT
Flow: Dense Correspondence Across Scenes and Its Applications” takes dense
correspondences beyond the same scene settings, by introducing the SIFT flow
method. In chapter “Dense, Scale-Less Descriptors”, our focus shifts from the
correspondence estimation method to the per pixel representation. It presents the
Scale Less SIFT descriptor which widens the application of SIFT flow to images
presenting information at different scales. A different approach to scale invariance
in cross scene correspondence estimation, the Scale-Space SIFT flow, is described
in chapter “Scale-Space SIFT Flow”. A descriptor design approach intended to
improve the discriminative quality of the per pixel representation is provided in
chapter “Dense Segmentation-Aware Descriptors”, which describes segmentation-
aware descriptors. Chapter “SIFTpack: A Compact Representation for Efficient
SIFT Matching” takes on a different concern: the storage and computational
requirements often involved in dense correspondence estimation. The SIFTpack
representation offers a compact and more efficient alternative to the Dense SIFT
representation used by SIFT flow and related methods. Finally, whereas methods
such as SIFT flow use a graph-based search for alignment, chapter “In Defense
of Gradient-Based Alignment on Densely Sampled Sparse Features” explores an
alternative approach of gradient-based alignment by continuous optimization.

In Part II, we focus on why dense correspondences are useful, even when they are
computed between images of different scenes, by showing how they may be used
to solve a wide range of computer vision problems. Specifically, chapter “From
Images to Depths and Back™ looks back to one of the early uses of cross scene
dense correspondence estimation for estimating scene depth from a single view.
The more recent Depth Transfer method for single view depth estimation by
dense correspondence estimation is presented in chapter “DepthTransfer: Depth
Extraction from Video Using Non-parametric Sampling”. Single image scene
parsing by the Label Transfer method is described in chapter “Nonparametric Scene
Parsing via Label Transfer”. The Label Transfer approach assumes many reference
images with matching label information, which is transferred through dense cor-
respondences to novel query images. The Joint Inference approach described in
chapter “Joint Inference in Image Datasets via Dense Correspondence” shows how
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this approach can be applied even when labels are available for only a few reference
images. Finally, chapter “Dense Correspondences and Ancient Texts” takes dense
correspondence estimation to an entirely different imaging domain and shows how
dense correspondences may be used to process challenging ancient, handwritten
texts.

Taken as a whole, this book shows that accurate dense correspondence estimation
is possible, even under challenging settings, and can be key to solving image
understanding problems in problem domains far beyond stereo and optical flow. We
hope that this book will make the methods and applications of dense correspondence
estimation accessible. Going beyond existing work, we would like to see this book
motivate the development of new, more accurate, more robust and more efficient
dense correspondence estimation techniques.

The editors are most grateful to all the friends and colleagues who have supported
this book by contributing their work for its chapters: Xiang Bai, Ronen Basri, Hilton
Bristow, Nachum Dershowitz, Alexandra Gilinsky, Sing Bing Kang, Kevin Karsch,
Tasonas Kokkinos, Simon Lucey, Viki Mayzels, Francesc Moreno-Noguer, Weichao
Qiu, Miki Rubinstein, Gil Sadeh, Alberto Sanfeliu, Daniel Stokl Ben-Ezra, Antonio
Torralba, Eduard Trulls, Zhuowen Tu, Xinggang Wang, Lior Wolf, Jenny Yuen, Alan
Yuille and Lihi Zelnik-Manor.

Tal Hassner thanks the Open University of Israel (OUI) and, in particular, the
chief of its research authority, Daphna Idelson, for their generous support for
this book. He also gratefully acknowledges the longtime guidance, support and
friendship of Ronen Basri, Michal Irani, Lior Wolf and Lihi Zelnik-Manor.

Ce Liu thanks Harry Shum, Rick Szeliksi, Bill Freeman, Ted Adelson, Antonio
Torralba and Yair Weiss for their advice and support in his life. He is grateful to his
collaborators, Antonio Torralba, Jenny Yuen, Miki Rubinstein, Marshall Tappen,
Kevin Karsch, Jaechul Kim and Philip Isola, on the topic of dense correspondences.

Raanana, Israel Tal Hassner
Cambridge, MA, USA Ce Liu
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Introduction to Dense Optical Flow

Ce Liu

Abstract Before the notion of motion is generalized to arbitrary images, we
first give a brief introduction to motion analysis for videos. We will review how
motion is estimated when the underlying motion is slow and smooth, especially the
Horn—Schunck (Artif Intell 17:185-203, 1981) formulation with robust functions.
We show step-by-step how to optimize the optical flow objective function using
iteratively reweighted least squares (IRLS), which is equivalent to conventional
Euler-Lagrange variational approach but more succinct to derive. Then we will
briefly discuss how motion is estimated when the slow and smooth assumption
becomes invalid, especially how large displacement motion is estimated.

1 Introduction

Motion estimation is one of the corner stones of computer vision. It is widely used in
video processing to compress videos and to enhance video qualities, and also used
in 3D reconstruction, object/event tracking, segmentation, and recognition.

Although video cameras are able to record pixels of the moving objects, motion
is unfortunately not recorded directly. Although the amount of motion can be
physically measured at very high accuracy in a lab setup, motion remains as a
percept instead of direct measurement for general videos. The challenge of motion
estimation is therefore to obtain motion that is consistent with human perception.

Although multiple representations of motion have been invented, the most
popular ones are parametric motion such as affine and homography (projective)
where the displacement of pixels undergoes certain parametric forms, or optical flow
fields, where every pixel has its own displacement vector. These two representations
mainly differ in how the motion fields are regularized across the image lattice, while
the optimization and initialization strategies are almost the same. Therefore, in this
chapter we focus on optical flow estimation. For parametric motion estimation,
please refer to [1].

C. Liu (&)
Google Research, Cambridge, MA, USA
e-mail: celiu@google.com
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4 C. Liu

Fig. 1 Tllustration of optical flow fields. (a) Superimposition of two input frames. (b) Superim-
position of frame 1 and warped frame 2 according to the estimated flow field. (¢) and (d) are
the zoomed-in versions of (a) and (b), respectively. Notice the double imaging in (a) and (¢) due
to the motion between the two frames and the sharp boundaries in (b) and (d) as the motion is
canceled via warping. This is a common way to inspect motion on printed paper, while flipping
back and forth two frames is a better way to inspect motion on a digital display. (e) and (f) are two
different ways to visualize the flow fields. In (e) flow fields are plotted as vectors on sparse grid.
Consequently, it is challenging to visualize a dense flow field with large magnitude. In (f) flow
fields are visualized via a color-coding scheme in (g) [2], where hue indicates orientation and
saturation indicates magnitude. It has become the standard of optical flow visualization since it is
possible to see the motion of every pixel. The two frames are from the MIT ground-truth motion
database [15]

The effect of motion is illustrated in Fig. 1. For two adjacent frames in a video
sequence, the correct flow field should be able to cancel the underlying motion
such that the second frame should be identical to the first frame after being warped
according to the flow field. In addition, the discontinuity of the flow field should
reflect the boundary of the objects in the scene. These are general guidelines to
inspect the correctness of the estimated flow field when the ground-truth flow field
is absent.

In this chapter we will introduce the optical flow formulation from the basic
brightness constancy and smoothness assumption and derive the optical flow
estimation algorithm via incrementalization and linearization (Taylor expansion) of
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the objective function. The optimization is derived using iteratively reweighted least
squares (IRLS), which is equivalent to the conventional Euler-Lagrange variational
approach but is more succinct to derive. Initialization is a key component of
optical flow estimation that has been often overlooked. We will discuss about the
conventional coarse-to-fine scheme and recent advances using feature matching for
initialization to account for fast moving scenes.

For the readers who are interested in knowing more about the literature of optical
flow estimation, there are a number of references. An early survey and evaluation
of optical flow algorithms can be found in [4]. Various forms of motion estimation
are discussed in Rick Szeliski’s book [20], while details of optical flow optimization
strategies are discussed in Ce Liu’s PhD Thesis [14].

2 Slow and Smooth Optical Flow

The motion of the moving scenes both in the nature and in the man-made world
takes drastically different forms. Most of the things in our surroundings do not
move typically, such as the land, buildings, walls, and desks. The motion of
vehicles can be regarded as moving planes from side view except for the wheels.
Animals and humans’ motion is more complicated with degrees of articulation. The
motion of water, fire, and explosion can be so complicated that it is beyond human
comprehension. To make the motion estimation problem tractable, a common
assumption is that motion is slow and smooth, namely the pixels tend to stay still or
move at low speed, and neighbor pixels tend to move together.

2.1 Basic Formulation

Let image lattice be p = (x,y) € A, and the two images to match be /,(p) and L(p).
Denote wy, = (up, vp) the flow vector at pixel p, where u, and v, are the horizontal
and vertical components of the flow fields, respectively.

As motion before, the optical flow field should be able to align the two images
along with the flow field. The objective function of optical flow is [12]

Ew) = Y Y (h(p) = h(p +w)D) + A D ¢(| Vi[> + [V, [?), (1)
p 14

where the first term is often called the data term and the second term is called the
smoothness term. A is a coefficient that balances the two terms. In this equation,
¥ (-) and ¢(-) are both robust functions [6], which can take following forms:

+ L2 norm: ¥ (2%) = 22
+ L1 norm: ¥ (%) = /22 + &2
+ Lorentzian: ¥(z%) = log(1 + yz?)
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The same functions can be chosen for the smoothness robust function ¢ as well.
Both L1 and Lorentzian forms make the function robust, namely to be able to
account for matching outliers in the data term and to encourage piecewise smooth
discontinuities. This is often called L1 total variation optical flow [9].

It is worth noting that the two images /, and /, are not limited to grayscale
images. If they can be multiple-channel images (such as RGB, HSV, and YUV),
an extra summation over the channels is needed in the data term. The images may
also contain some image features such as gradients and other features from linear
or nonlinear filtering. When gradients are used, then gradient constancy is implied,
which can make the flow more stable at the presence of global illumination change.

This objective function in Eq. (1) is very difficult to minimize because of the
warping function I>(p + wp). To deal with warping, we follow the typical incre-
mentation and linearization strategy. First, the objective function can be rewritten to
optimize over incremental dw = (du, dv) of the flow field:

E(w,dw) = Yy (Ih(p) — h(p + wp + dwp)|*)
P

+ A ¢V + dup)? + [V (p + dvy) ). )
P

Second, we can linearize the warping using Taylor expansion

L(p +wp +dwp) — 11 (p) ~ I, (p) + L(p)du, + Iy(p)du,, (3)
where
1i(p) = L(p +wp) — Li(p), 4)
0
Ix(p) = 5;[2(}7 + Wp)v (5)
d
L,(p) = a—yfz(P + wp). (6)

Now the objective function becomes

E(w.du,dv) = Y ¥ (l(p) + L(p)du, + L,(p)dv,|*)
P

+ 1) ¢V (u+ du),|* + |V(v + dv), ). (7)
P

Our goal is to rewrite Eq. (7) in vector and matrix forms. We define the robust
function ¥ and @ as applying the robust function to each element of a vector:

(X) = [y(X). ¥(Xa), ..., ¥(X)]", (8)
D(X) = [p(X1),p(X2),.... 0 (X)) 9)
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To be succinct, we denote XY and X2 as element-wise multiplication and element-
wise square for vectors

XY = [X,Y1, XY, ... . X, VT, (10)
Y=g, . (11)

n

In this way Eq. (7) can be rewritten in a vector form
Ew,du,dv) = 1"¥( (0, + Ldu + ,dv)*)
+ M7 @ (D + du))’ + (D, (u + duw)?
+ (De(v + dv))2 + (Dy(v + dv))z). (12)

where D, and Dy are matrices corresponding to x- and y-derivative filters, such as
[—1, 1] filters.

2.2 Optimization via Iteratively Reweighted Least Squares

The typical approach that can be found in the optical flow literature is to use Euler—
Lagrange to find fixed point of the partial differential equations (PDEs). We are
going to show how to derive using Euler-Lagrange in the next subsection. Here, we
are going to use IRLS to directly optimize the objective function in Eq. (7).
To simplify the notations, denote
W = lI/’((I, 4 Ldu + Iydv)z),
V' = diag(V'L1,), !P)’O, = diag(¥'L1,), W;’_v = diag(¥'L,1,).
V', = diag(W'L1), ¥, = diag(¥'L1),

b4

@ = dlag((;b ((Dx(u + du))z + (Dy(u + du))Z

+(De(v + dv))’ + (Dy(v + dv))z)),
L =D[®'D, + D]®'D,. (13)

Taking the derivative of the objective function w.r.t. du and setting it to be zero, we
obtain



