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Dedicated to the memory of
José€ Luis Rubio de Francia, my teacher and friend,
who would have written a much better book than I have



Preface

Fourier Analysis is a large branch of mathematics whose point of departure is
the study of Fourier series and integrals. However, it encompasses a variety
of perspectives and techniques, and so many different introductions with
that title are possible. The goal of this book is to study the real variable
methods introduced into Fourier analysis by A. P. Calderén and A. Zygmund
in the 1950’s.

We begin in Chapter 1 with a review of Fourier series and integrals,
and then in Chapters 2 and 3 we introduce two operators which are basic
to the field: the Hardy-Littlewood maximal function and the Hilbert trans-
form. Even though they appeared before the techniques of Calderén and
Zygmund, we treat these operators from their point of view. The goal of
these techniques is to enable the study of analogs of the Hilbert transform
in higher dimensions; these are of great interest in applications. Such oper-
ators are known as singular integrals and are discussed in Chapters 4 and 5
along with their modern generalizations. We next consider two of the many
contributions to the field which appeared in the 1970’s. In Chapter 6 we
study the relationship between H', BMO and singular integrals, and in
Chapter 7 we present the elementary theory of weighted norm inequalities.
In Chapter 8 we discuss Littlewood-Paley theory; its origins date back to the
1930’s, but it has had extensive later development which includes a number
of applications. Those presented in this chapter are useful in the study of
Fourier multipliers, which also uses the theory of weighted inequalities. We
end the book with an important result of the 80’s, the so-called 7'1 theorem,
which has been of crucial importance to the field.

At the end of each chapter there is a section in which we try to give
some idea of further results which are not discussed in the text, and give
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Xiv Preface

references for the interested reader. A number of books and all the articles
cited appear only in these notes; the bibliography at the end of the text is
reserved for books which treat in depth the ideas we have presented.

The material in this book comes from a graduate course taught at the
Universidad Auténoma de Madrid during the academic year 1988-89. Part
of it is based on notes I took as a student in a course taught by José Luis
Rubio de Francia at the same university in the fall of 1985. It seemed to have
been his intention to write up his course, but he was prevented from doing so
by his untimely death. Therefore, I have taken the liberty of using his ideas,
which I learned both in his class and in many pleasant conversations in the
hallway and at the blackboard, to write this book. Although it is dedicated
to his memory, I almost regard it as a joint work. Also, I would like to thank
my friends at the Universidad Auténoma de Madrid who encouraged me to
teach this course and to write this book.

The book was first published in Spanish in the Coleccion de Estudios
of the Universidad Auténoma de Madrid (1991), and then was republished
with only some minor typographical corrections in a joint edition of Addison-
Wesley /Universidad Auténoma de Madrid (1995). From the very beginning
some colleagues suggested that there would be interest in an English trans-
lation which I never did. But when Professor David Cruz-Uribe offered
to translate the book I immediately accepted. I realized at once that the
text could not remain the same because some of the many developments
of the last decade had to be included in the informative sections closing
each chapter together with a few topics omitted from the first edition. As
a consequence, although only minor changes have been introduced to the
core of the book, the sections named “Notes and further results” have been
considerably expanded to incorporate new topics, results and references.

The task of updating the book would have not been accomplished as it
has been without the invaluable contribution of Professor Cruz-Uribe. Apart
from reading the text, suggesting changes and clarifying obscure points, he
did a great work on expanding the above mentioned notes, finding references
and proposing new results to be included. The improvements of this book
with respect to the original have certainly been the fruit of our joint work,
and I am very grateful to him for sharing with me his knowledge of the
subject much beyond the duties of a mere translator.

Javier Duoandikoetxea

Bilbao, June 2000
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Acknowledgment: The translator would like to thank the Ford Founda-
tion and the Dean of Faculty at Trinity College for their generous support
during the academic year 1998-99. It was during this year-long sabbati-
cal that this project was conceived and the first draft of the translation
produced.



Preliminaries

Here we review some notation and basic results, but we assume that they are
mostly well known to the reader. For more information, see, for example,
Rudin [14].
In general we will work in R". The Euclidean norm will be denoted by
|-]. If x € R" and r > 0,

B(z,r) ={yeR": |z —y| <r}

is the ball with center x and radius r. Lebesgue measure in R" is denoted
by dz and on the unit sphere S"~! in R" by do. If E is a subset of R", |E|
denotes its Lebesgue measure and xp its characteristic function: xyg(z) =1
if x € F and 0 if z ¢ E. The expressions almost everywhere or for almost
every x refer to properties which hold except on a set of measure 0; they are
abbreviated by “a.e.” and “a.e. x.”

If a = (ai,... ,a,) € N" is a multi-index and f : R" — C, then

where |a| = a1+ -+ + a, and 2% = 27" -+ 2o,
Let (X, p) be a measure space. LP(X,pu), 1 < p < oo, denotes the
Banach space of functions from X to C whose p-th powers are integrable;

the norm of f € LP(X, p) is

1= ( /. Iflpduy/p-

xvii



xviii Preliminaries

L>(X, ) denotes the Banach space of essentially bounded functions from
X to C; more precisely, functions f such that for some C > 0,

p({z € X :|f(z)| > C}) =0.

The norm of f, || f||so, is the infimum of the constants with this property. In
general X will be R" (or a subset of R") and dp = dz; in this case we often do
not give the measure or the space but instead simply write L”. For general
measure spaces we will frequently write LP(X) instead of LP(X, pu); if p is
absolutely continuous and dy = w dx we will write LP(w). The conjugate
exponent of p is always denoted by p':

1 1
p P
The triangle inequality on LP has an integral version which we refer to
as Minkowski’s integral inequality and which we will use repeatedly. Given

measure spaces (X, p) and (Y, v) with o-finite measures, the inequality is

(LIf f(x,y)du(y)pdum)l/ps L[ lf(x,y)|”du(a;)>1/p (o).

The convolution of two functions f and g defined on R" is given by

fxg(z)= o fWg(x —y)dy = - flz—y)g(y) dy

whenever this expression makes sense.

The spaces of test functions are C2°(R™), the space of infinitely differ-
entiable functions of compact support, and S(R™), the so-called Schwartz
functions. A Schwartz function is an infinitely differentiable function which
decreases rapidly at infinity (more precisely, the function and all its deriva-
tives decrease more rapidly than any polynomial increases). Given the ap-
propriate topologies, their duals are the spaces of distributions and tempered
distributions. It makes sense to define the convolution of a distribution and
a test function as follows: if 7' € C°(R")" and f € C°(R"), then

T f(z) = (T, f),

where f(y) = f(—y) and 7.f(y) = f(z +y). Note that this definition
coincides with the previous one if T is a locally integrable function. Similarly,
we can take T' € S(R") and f € S(R™). We denote the duality by either
(T, f) or T(f) without distinction.

References in square brackets are to items in the bibliography at the end
of the book.

Finally, we remark that C' will denote a positive constant which may be
different even in a single chain of inequalities.
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Chapter 1

Fourier Series and
Integrals

1. Fourier coefficients and series

The problem of representing a function f, defined on (an interval of) R, by
a trigonometric series of the form

(1.1) f(z) = 3 ay, cos(kx) + by sin(kx)
k=0

arises naturally when using the method of separation of variables to solve
partial differential equations. This is how J. Fourier arrived at the problem,
and he devoted the better part of his Théorie Analytique de la Chaleur
(1822, results first presented to the Institute de France in 1807) to it. Even
earlier, in the middle of the 18th century, Daniel Bernoulli had stated it
while trying to solve the problem of a vibrating string, and the formula for
the coefficients appeared in an article by L. Euler in 1777.

The right-hand side of (1.1) is a periodic function with period 2, so f
must also have this property. Therefore it will suffice to consider f on an
interval of length 27. Using Euler’s identity, e’** = cos(kz) + isin(kz), we
can replace the functions sin(kz) and cos(kz) in (1.1) by {e** : k € Z}; we
will do so from now on. Moreover, we will consider functions with period 1
instead of 27, so we will modify the system of functions to {e2™** : k € Z}.
Our problem is thus transformed into studying the representation of f by

(1.2) f(z) = i cxe” T,
k=—o0

1



2 1. Fourier Series and Integrals

If we assume, for example, that the series converges uniformly, then by
multiplying by e =27 and integrating term-by-term on (0,1) we get

1
Com :/ f(m)e—Qmmxdl_
0

because of the orthogonality relationship

1 .
(13) / e?ﬂikl‘e—Qrimz dIL _ O lf k ?é m
0 1 if k=m.

Denote the additive group of the reals modulo 1 (that is R/Z) by T,
the one-dimensional torus. This can also be identified with the unit circle,
S'. Saying that a function is defined on T is equivalent to saying that it is
defined on R and has period 1. To each function f € L!(T) we associate the
sequence {f (k)} of Fourier coefficients of f, defined by

1
(1.4) f(k) = / f(z)e~ 2k dg.
0
The trigonometric series with these coefficients,
(1. 5) Z f 2mkz
k=—o00

is called the Fourier series of f.

Our problem now consists in determining when and in what sense the
series (1.5) represents the function f.

2. Criteria for pointwise convergence

Denote the N-th symmetric partial sum of the series (1.5) by Sy f(x); that
is,

SNf Z f 21rik;v‘

Note that this is also the N-th partial sum of the series when it is written
in the form of (1.1).

Our first approach to the problem of representing f by its Fourier series
is to determine whether lim Sy f(z) exists for each z, and if so, whether it
is equal to f(x). The first positive result is due to P. G. L. Dirichlet (1829),
who proved the following convergence criterion: if f is bounded, piecewise
continuous, and has a ﬁnite number of maxima and minima, then lim Sy f(x)
exists and is equal to 3[f(z+)+ f(z—)]. Jordan’s criterion, which we prove
below, includes this result as a special case.



2. Criteria for pointwise convergence 3

In order to study Sy f(x) we need a more manageable expression. Dirich-
let wrote the partial sums as follows:

Snf(zx) = Z f(t ~2mikt gy . 2mike

Af(t)DN(.’L‘—t)dt
1
- [ fa- 0Dyt d

where Dy is the Dirichlet kernel,
N

DN(t)= Z e‘Zﬂ'ikt.

k=—N
If we sum this geometric series we get
(1.6) Dn(t) = sin(7(2N + 1)t)

sin(mt)
This satisfies

1
/ Dy(t)dt =1 and |Dy(t)| <
0

1
et o < |t < 1/2.

We will prove two criteria for pointwise convergence.

Theorem 1.1 (Dini’s Criterion). If for some x there exists 6 > 0 such that

/ fla+t) — fz)
[t|]<d

dt < o0,
t

then

Jim_ Sy f(x) = f(z).

Theorem 1.2 (Jordan’s Criterion). If f is a function of bounded variation
in a neighborhood of z, then

hm Snf(z) = —[f (@4) + flz—)]:

At first it may seem surprising that these results are local, since if we
modify the function slightly, the Fourier coefficients of f change. Neverthe-
less, the convergence of a Fourier series is effectively a local property, and if
the modifications are made outside of a neighborhood of z, then the behav-
ior of the series at z does not change. This is made precise by the following
result.



