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PREFACE

Six invited papers on computational methods of solving partial differential equations
were presented at the 1981 Conference on Numerical Solutions of Partial Differential
Equations held at the University of Melbourne, Australia. They were also printed as
part of the Conference Proceedings titled Numerical Solutions of Partial Differential
Equations, edited by J..Noye and published by the North-Holland Publishing Com-
pany. The articlés were so well received that it was decided to expand them and print
them in a separate book so that the material they contained would be more readily
available to postgraduate students and research workers in Universities and Institutes
of Technology and to scientists and engineers in other establishments.

-Because of the importance of ordinary differential equations and their use in the
solution of partial differential equations, it was decided to include an additional ar-
ticle on this topic. Consequently, the first contribution, written.by Robert May and
John Noye, reviews the methods of solving initial value problems in ordinary dif-
ferential equations. The next four articles are concerned with alternative techniques
which may be used to solve problems involving partial differential equations: finite
difference methods are described by John Noye of the University of Adelaide, Galer-
kin techniques by Clive Fletcher of the University of Sydney, finite element methods
by Josef Tomas of the Royal Melbourne Institute of Technology, and boundary
integral equation techniques by Leigh Wardle of the CSIRO Division of Applied Geo-
mechanics. The first three of these are updated and extended revisions of the corres-
ponding papers presented at the Melbourne conference; because the last mentioned
author was unable to find time to revise his article, it has been reprinted in its orig-
inal form from the 1981 Proceedings. The last two articles in this book describe the
two basic methods of solving large sets of sparse linear algebraic equations: direct
.methods are presented by Ken Mann of the Chisholm Institute of Technology and
iterative techniques by Len Colgan of the South Australian Institute of Technology.
These methods are often incooperated in techniques for solving ordinary and partial
differential equations. :

My personal thanks go to the above-mentioned contributors for their cooperation in
this venture, and to Drs. Arjen Sevenster (Mathematics Editor) and John Butterfield
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(Te.chnical Editor) of Elsevier Science Publishers B.V. (North-Holland), for their
assistance with the printing of this book. '

John Noye
The University of Adelaide

April, 1983
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4 Robert May & John Noye

1. INTRODUCTION

Mathematical models of protlems in science and engineering often
involve one or more ordinary differential equations. For instance,
problems in mechanics such as the motion of projectiles or orbiting
bodies, in population dynamics and in chemical kinetics may be
modelléd Ly ordinary differential equations.

Many clever methods of finding analytical solutions of ordinary
differential equations are presented in elementary courses, but the
majority of differential equations are not amenable to these methods,
and unfortunately most of the differential equations which model
practical problems fall into this category. For this reason many texts
on mechanics, population dynamics and chemical kinetics develop elegant
systems of ordinary differential equations, but give selutions to only
very simple idealised problems.

Over the years various numerical methods have been devised, in general
not by mathematicians but by people working in other fields for whom
the method of solution was only incidental to the problem they were
trying to solve. For instance, the technique now referred to as Adams
method first appeared in an article on capillary action published Ly
Bashforth and Adams (1883).

However, in the last thirty or so years mathematicians have put the
subtject on a much sounder theoretical basis, particularly in areas such
as stability and the propagation of errors. Much work has been done on
the implementation of methods and on their comparative testing. This
has produced some agreement on what is the "best'" method for a given
non-stiff ordinary differential equation. Recently the problem of
stiffness has received a lot of attention.

The aim of this article is to provide a practically oriented guide to
help people with 1ittle or no previous knowledge to solve ordinary
differential equations by numerical means. For this reason most of the
theoretical results are merely described but not proved. For their
proof, the interested reader is referred to the classical work of
Henrici (1962) or the took by Stetter (1973). Section 11, on the
choice of method and available software, is directed particularly to
the beginner who must select a method to solve a particular problem and
who wishes .to find a suitable program to implement the method.

As the title of this article implies, only initial value problems have
teen considered. Boundary value problems for ordinary differential
equations are also very important. A knowledge of the solution of
initial value problems is useful when it comes to boundary value
problems, which require more sophisticated numerical techniques for
their solution. Keller (1968 and 1976) describes methods for solving
the two-point boundary value problem, and Keller (1975) gives a general
survey of boundary value problems in general. Unlike initial value
problems, for which some well tried automatic computer codes are now
readily available, the development of computer programs for boundary
value problems is only in its infancy.

The main techniques considered in this article are those based on Taylor
series (Section 3), the Runge-Kutta methods (Section 5), Tinear multi-
step methods (Section 7) and extrapolation methods (Sectioh 9).

A1l calculations made to demonstrate the relative accuracy of these
methods were carried out on a CDC-CYBER 170-720, unless otherwise
indicated. Besides going to the original articles for information, the
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descriptions of these methods given in the books by Gear (1971), Henrici
(1962), Ralston (1965), Shampine and Allen (1973), Shampine and Gordon

(1975), and Stetter (1973) w:re used in the preparation of this article.
Particular mention must be made of the excellent book by Lambert (1973).

Whenever an initial value problem in ordinary differential equations
arises, a quick check to determine whether analytical techniques will
give a general solution may be worthwhile. In this regard, books Tike
Murphy (1960) are useful: they contain methods for solution of ordinary
differential equations with a 1ist of equations with known solutions.
However, if a rapid search of this kind is not successful, the methods
described here must be used.

Exact solutions for particular initial value problems are also useful
for another reason. They can be used to check the accuracy of a
numerical technique, and they are good indicators of possible coding
errors.
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2.1

2.2

Definitions
An equation of the form .
TER TR, SO o 10 (2.1.1)

is called an ordinary differential equation of order m. A function
y(x) defined and m times differentiable on some interval I

which satisfies (2.1.1) for all x e I s called a solution of the
differential equation. Differential equations generally have many
solutions, and extra conditions, known as boundary conditions, must be
imposed to single out a particular solution. These boundary conditions
usually take the form of the solution and/or its derivatives being
specified for particular values of x, and it can be shown that a
differential equation of order m requires m boundary conditions. If
all the boundary conditions apply at one value of x they are called
initial conditions, and the differential equation together with the
initial conditions is termed an initial value problem - if more than one
value of x 1is involved in the boundary conditions it is called a
boundary value problem.

A differential equation is Zinear if y and its derivatives occur
linearly, that is if the equation is of the form

(m)

a_(x)y ™ + ankl(x))ﬁnhl) + oo+ (x)y = g(x). (2.1.2)

In this paper we consider only explicit differential equations, that is
differential equations which can be put in the form

Y™ Gy Yy ey ™). (2.1.3)
Clearly all linear differential éﬁuations are in this category, as are
the majority of non-linear equations. For the numerical solution of
implicit differential“quations see Fox and Mayers (1981).

Reduction of Higher-Order Differential Equations to First-Order Systems

Consider the mth-order initial value problem

F = Py it 1Y

(i-1) . ;

y (a) = n,  i=1,2,...,m. (2.2.1)
By introducing the variables ¥ i=1,2,...,m, where

y1 = y )

.y2 = y‘;

ys =y

y, =y, (2.2.2)

m

equation (2.2.1) may be written as an initial value problem for a first-
order system, namely



2.3

Ordinary Differential Equations

¥a, =-¥2» yi(a) = ny,

Y2 = Y3, y2(a) = ng,

Y3 = Y ys(a) = ns,

Y. = F(aFraYase.ay,)s y,(a) =n_. .23y
Using the matrix notation

Y= L.Yn.Vz,-..,.Ym]T

N = [NisNzseennn 3

£ = [y2s¥ssensY s FGY1Y2500ay )T s (2.2.4)
the initial value problem becomes -

y' = fif.y), y(a).=n. (2.2.5)

In the same way an initial value problem involving a system of higher
order equations can-be put in the form (2.2.5).

" Note that if the vector signs are omitted (2.2.5) defines a first-order

initial value problem. This is particularly important because it means
that most results which hold for a first-order initial value problem
can be generalised to a system of m first-order equations and hence
apply to an mth-order initial value problem. Similarly, any method of
solution of a first-order initial value problem can be extended to a
system of equations and thus may be used to solve an mth-order initial
value problem. Throughout the rest of this article only first-order
equations will be considered and from time-to-time it will be indicated
how the result applies to the more general case.

Boundary value problems can also be reduced to a system of first-order
equations, but the boundary conditions do not apply at the same value
of x. Methods of solution of initial value problems can also be
modified to solve boundary value problems.

Existence and Uniqueness of Solutions

The solutions of y' = f(x,y) are generally a family of curves, and

the initial condition y(a) = n wusually singles out one of these to
give a unique solution. For example y' =y has the solutions y = ce",
and y(0) =1 implies that c = 1, giving the unique solution y = ¢
(see Figure 2.1). However not all such problems have a unique solution.
Consider

y'=vy, y(0)=0. (2.3.1)
Clearly y =0 is a solution, but so is

0 D= <€
y(x) = (2.3.2)

i(x~c)2 X'5€ ,

for any constant c. Thus this problem has infinitely many solutions
(see Figure 2.2), and would obviously prove difficult to solve
numerically.

i
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FIGURE 2.1: Solutions of y'=y and the unique solution satisfying
y(0)=1.

The initial value problem
y' = £0X.¥) o y(d) =7, (2.3.3)
is guaranteed a unique solution on some interval [a,b] if f(x,y)

satisfies certain conditions, as the following theorem proved in
Henrici (1962) shows.

FIGURE 2.2: Some of the solutions of y'=Vy, y(0)=0.
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Theorem: If‘ f(x,y) <is defined and continuous for all points in the
region A

D={(x,y) :a<xs<b, -»<yc<w},

and there exists a constant L such that for all (x,y) and (Xx,y*)
in D ;

[F(x,y) - f(x,y*) < L ly-y*| , (2.3.4)

then the initial value problem (2.3.3) has a unique solution on [a,b]
for any given number n.

The constant L 1is called a Lipschitz constant, and the condition
(2.3.4) is called the Lipschitz condition. This theorem applies to a
system of equations - vector signs must be put under f,y and n and
the absolute values in (2.3.4) replaced by vector norms.

In the case that f(x,y) has a continuous partial derivative with
respect to y, the mean value theorem gives

flx,y) - flxoy*) = af/ay| 5 (y-y*) (2.3.5)

where y lies between y and y*. If of/3y is bounded by K on D,
that. is there exists some constant K such that

|af/ay| < K for all (x;y)-eDi; (2.3.6)

we can take L = K. However, if 3f/3y is unbounded on D, thea f
does not satisfy a Lipschitz condition. For a system of m equations
both f and y are m-vectors, and 3f/3y is the Jacobian of f
with respect to y, that is a mxm matrix whose 1i,j element is

of; /3y; » so that a matrix norm subordinate to the vector norm used in
(2.3.4) must replace the absolute value in (2.3.6).

Many problems do not satisfy the above theorem even though they have a
unique solution. In this case it is often possible to modify the
problem in such a way that the theorem is satisfied, but the solution
is unchanged. Consider for example the initial value problem

y'=y%,  y(0)=1. 2. 3.7)

On any interval [0,c], where c < 1, this has the unique solution

() = T (2.3.8)

but f(x,y) = y*> giving af/3y = 2y, and since this is unbounded as
©y>zo, f does not satisfy a Lipschitz condition. However 3f/3y
is bounded on any finite region, so if we define
y2 |y|SM1 B
f*(x,y) = (2.3.9)
M lyl >n,

then f*(x,y) is continuous and satisfies a Lipschitz condition, Thus
the initial value problem

y' = *(xy), " y(0) ="1, (2.3.10)
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is guaranteed a unique solution, and the solution of (2.3.10) is
identically equal to that of (2.3.7) for |y| < M.

Another example is
y'=vy, y(0) =1, ' (2.3.11)

Here 8f/3y = 1/2/y s unbounded as y -~ 0 and f 1is not defined for
y < 0.7 We can define

vy 5 O

f*(x,y) =

7 <1, (2.3.12)
which is clearly continuous and satisfies a Lipschitz condition, and
since the solution of (2.3.11) is monotone increasing (y' > 0) then
y=21 for x>0 so the modified problem has the same unique solution.
Note that this example is nearly the same as the earlier example (2.3.1)
of an initial value problem with more than one solution - only the
initial value has been changed. The above modification cannot be
carried out for (2.3.1) since the initial value y(0) = 0 is that at
which f fails to satisfy a Lipschitz condition.

In many practical problems the function f(x,y) 1is not continuous, but
is only piecewise continuous. An example is the equations describing
the motion of a multi-stage rocket - when a burnt out stage is detached
the mass changes discontinuously. If the problem is split up into
several problems, each corresponding to an interval on which f is
continuous, then they may individually satisfy the theorem, and the end
point of the solution on one interval is used as the initial value for
the problem on the next interval. s

A more complete and rigorous treatment of the uniqueness of solutions
of ordinary differential equations is given by Coddington and
Levinson (1955).

Autonomous Systems of Differential Equations

Some papers consider only the autonomous system of differential
equations

y'=fly), y@)=n, (2.4.1)
that is a system where the derivatives are independent of x. Any
system of differential equations can be put into the form (2.4.1) with
the addition of one equation. Consider the general system of m first-
order differential equations

¥y = £ (R0, s¥tyans ¥Yst oo Yyladm ny
¥ = (050,008 ) ¥, (2) =0y,
Y XYooy, v () = (2.4.2)

Introducing the variable Yooy = X» We have dym*l/dx =1 and
y . (a) = a so that

nr+ 1
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Foly o Y1a¥aseeany )y y,(@) = ny,

&
"

-
N
|

o fz(‘ym-fl a)’,:yz,---,ym), yz(a) =

l
-
N

y, = f (Y., o¥is¥as-eeny)s ¥y (a) =m,

m m
1

I Y., (@) =a, (2.4.3)

which is an autonomous system. Hence any method of solution of an
autonomous system of differential equations ean be used for a non-
autonomous system. : .

Graphical Solution®

A method of finding an approximate solution, but only to a single first-
order equation, is the graphical method. If (x,y) 1is a point on the
graph of y(x), the solution of

y' = f(x,y), y(a) =n, (2.5.1)

then the value f(x,y) 1is the slope of the tangent to the solution
curve at the point (x,y). A direction field may be drawn by evaluating
f(x,y) at various points in the x-y plane and drawing a small arrow
of slope f(x,y) from (x,y). The approximate solution is then found
by sketching a curve from the point (a,n) such that the arrows are
tangential to it. Figure 2.3 shows the approximate solution to (2.3.11)
obtained in this way.

-

YA L1
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SIARIAN ISINIAIE

w

[ LLIYIL LI LA L

~n
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1 1 L -

0 1 2 3 " x
FIGURE 2.3: The graphical solution of y'=vy, y(0)=1.
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3. TAYLOR SERIES METHODS
3.1 The Solution as a Taylor Series

The solution of the initial value problem

y' = f(x,y),  y(a) =n (3.1.1)
may be expressed as the Taylor series

[l X-a e " X=-a 5 m

y(x) = y(a) + (x-a)y' (@) + 53 yr(a) + K21y o) + L (3.1.2)

provided it is infinitely differentiable at x = a. The second and

higher derivatives in (3.1.2) may be obtained (if they exist) by
repeatedly differentiating the differential equation using the chain

rule. Thus
y(a) =n,
y'(a) = f(x,y) ,
x=a
y=n
yidal: = % fxy)
x=a
y=n
Bf , of dy
X y dx =3
y=n
= [% + f f] ’
* o ¥ Jx=a
y=n
Yl 7. 5 TR —— etc. {3.1.3) .

In practice it is usually computationally more efficient to calculate
the derivatives recursively as shown in the following example.

An example which will be used throughout this paper is the initial
value problem

y' =1 - 2xy, y(0) =0 . (3.1.4)

Using the linearity of fhe differential equation, it is easy to derive
the solution

E
y=e™ f e dt. (3.1.5)
0

This expression is known as Dawson's integral, and is graphed and
tabulated in Abramowitz and Stegun (1965).

Now the initial condition is
y(0) =0,

and substituting x = 0 into the differential equation gives



