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This book is intended to be an introductory text on the subject of electric circuits. It
provides simple explanations of the basic concepts, followed by simple examples and exer-
cises. When necessary, detailed derivations for the main topics and examples are given to
help readers understand the main ideas. MATLAB is a tool that can be used effectively
in Electric Circuits courses. In this text, MATLAB is integrated into selected examples to
illustrate its use in solving circuit problems. MATLAB can be used to check the answers or
solve more complex circuit problems. This text is written for a two-semester sequence or a
three-quarters sequence on electric circuits.

Suggested Course Outlines

The following is a list of topics covered in a typical Electric Circuits courses, with suggested
course outlines.

ONE-SEMESTER OR -QUARTER COURSE

If Electric Circuits is offered as a one-semester or one-quarter course, Chapters 1 through
12 can be taught without covering, or only lightly covering, sections 1.6, 2.10, 2.11, 3.6, 4.7,
5.6,5.75.8,6.7 76,77 8.8,89,9.9,9.10,10.12,11.7 12.5,12.6,and 12.7

TWO-SEMESTER OR -QUARTER COURSES

For two-semester Electric Circuit courses, Chapters 1 through 8, which cover dc circuits,
op amps, and the responses of first-order and second-order circuits, can be taught in the
first semester. Chapters 9 through 20, which cover alternating current (ac) circuits, Laplace
transforms, circuit analysis in the s-domain, two-port circuits, analog filter design and imple-
mentation, Fourier series, and Fourier transform, can then be taught in the second semester.

THREE-QUARTER COURSES

For three-quarter Electric Circuit courses, Chapters 1 through 5, which cover dc circuits and
op amps, can be taught in the first quarter; Chapters 6 through 13, which cover the responses
of first-order and second-order circuits and ac circuits, can be taught in the second quarter,
and Chapters 14 through 20, which cover Laplace transforms, circuit analysis in the s-do-
main, two-port circuits, analog filter design and implementation, Fourier series, and Fourier
transform, can be taught in the third quarter.

Depending on the catalog description and the course outlines, instructors can pick
and choose the topics covered in the courses that they teach. Several features of this text
are listed next.

Features

After a topic is presented, examples and exercises follow. Examples are chosen to expand
and elaborate the main concept of the topic. In a step-by-step approach, details are worked
out to help students understand the main ideas.



PREFACE Xi

In addition to analyzing RC, RL, and RLC circuits connected in series or parallel in
the time domain and the frequency domain, analyses of circuits different from RC, RL, and
RLC circuits and connected other than in series and parallel are provided. Also, general
input signals that are different from unit step functions are included in the analyses.

In the analog filter design, the specifications of the filter are translated into its trans-
fer function in cascade form. From the transfer function, each section can be designed with
appropriate op amp circuits. The normalized component values for each section are found
by adopting a simplification method (equal R equal C or unity gain). Then, magnitude
scaling and frequency scaling are used to find the final component values. The entire design
procedure, from the specifications to the circuit design, is detailed, including the PSpice
simulation used to verify the design.

Before the discussion of Fourier series, orthogonal functions and the representation
of square integrable functions as a linear combination of a set of orthogonal functions are
introduced. The set of orthogonal functions for Fourier series representation consists of
cosines and sines. The Fourier coefficients for the square pulse train, triangular pulse train,
sawtooth pulse train, and rectified sines and cosines are derived. The Fourier coefficients of
any variation of these waveforms can be found by applying the time-shifting property and
finding the dc component.

MATLAB can be an effective tool in solving problems in electric circuits. Simple
functions such as calculating the equivalent resistance or impedance of parallel connec-
tion of resistors, capacitors, and inductors; conversion from Cartesian coordinates to polar
coordinates; conversion from polar coordinates to Cartesian coordinates; conversion from
the wye configuration to delta configuration; and conversion from delta configuration to
wye configuration provide accurate answers in less time. These simple functions can be part
of scripts that enable us to find solutions to typical circuit problems.

The complexity of taking the inverse Laplace transforms increases as the order
increases. MATLAB can be used to solve equations and to find integrals, transforms,
inverse transforms, and transfer functions. The application of MATLARB to circuit analysis
is demonstrated throughout the text when appropriate. For example, after finding inverse
Laplace transforms by hand using partial fraction expansion, answers from MATLAB are
provided as a comparison.

Examples of circuit simulation using OrCAD PSpice and Simulink are given at the
end of each chapter. Simulink is a tool that can be used to perform circuit simulations. In
Simulink, physical signals can be converted to Simulink signals and vice versa. Simscapes
include many blocks that are related to electric circuits. Simulink can be used in computer
assignments or laboratory experiments.

The Instructor’s Solution Manual for the exercises and end-of-chapter problems is
available for instructors. This manual includes MATLAB scripts for selected problems as a
check on the accuracy of the solutions by hand.

Overview of Chapters

In Chapter 1, definitions of voltage, current, power, and energy are given. Also, independent
voltage source and current source are introduced, along with dependent voltage sources and
current sources.

In Chapter 2, nodes, branches, meshes, and loops are introduced. Ohm’s law is explained.
Kirchhoff’s current law (KCL), Kirchhoff’s voltage law (KVL), the voltage divider rule,
and the current divider rule are explained with examples.

In Chapter 3, nodal analysis and mesh analysis are discussed in depth. The nodal analysis
and mesh analysis are used extensively in the rest of the text.

Chapter 4 introduces circuit theorems that are useful in analyzing electric circuits and
electronic circuits. The circuit theorems discussed in this chapter are the superposition
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principle, source transformations, Thévenin’s theorem, Norton’s theorem, and maximum
power transfer.

Chapter 5 introduces op amp circuits. Op amp is a versatile integrated circuit (IC) chip
that has wide-ranging applications in circuit design. The concept of the ideal op amp model
is explained, along with applications in sum and difference, instrumentation amplifier,

and current amplifier. Detailed analysis of inverting configuration and noninverting
configuration is provided.

In Chapter 6, the energy storage elements called capacitors and inductors are discussed.
The current voltage relation of capacitors and inductors are derived. The energy stored on
the capacitors and inductors are presented.

In Chapter 7, the transformation of RC and RL circuits to differential equations and
solutions of the first-order differential equations to get the responses of the circuits
are presented. In the general first-order circuits, the input signal can be dc, ramp signal,
exponential signal, or sinusoidal signal.

In Chapter 8, the transformation of series RLC and parallel RLC circuits to the second-
order differential equations, as well as solving the second-order differential equations to
get the responses of the circuits are presented. In the general second-order circuits, the
input signal can be dc, ramp signal, exponential signal, or sinusoidal signal.

Chapter 9 introduces sinusoidal signals, phasors, impedances, and admittances. Also,
transforming ac circuits to phasor-transformed circuits is presented, along with analyzing
phasor transformed circuits using KCL, KVL, equivalent impedances, delta-wye
transformation, and wye-delta transformation.

The analysis of phasor-transformed circuits is continued in Chapter 10 with the
introduction of the voltage divider rule, current divider rule, nodal analysis, mesh analysis,
superposition principle, source transformation, Thévenin equivalent circuit, Norton
equivalent circuit, and transfer function. This analysis is similar to the one for resistive
circuits with the use of impedances.

Chapter 11 presents information on ac power. The definitions of instantaneous power,
average power, reactive power, complex power, apparent power, and power factor are also
given, and power factor correction is explained with examples.

As an extension of ac power, the three-phase system is presented in Chapter 12. The
connection of balanced sources (wye-connected or delta-connected) to balanced loads
(wye-connected or delta connected) are presented, both with and without wire impedances.

Magnetically coupled circuits, which are related to ac power, are discussed in Chapter 13.
Mutual inductance, induced voltage, dot convention, linear transformers, and ideal
transformers are introduced.

The Laplace transform is introduced in Chapter 14. The definition of the transform, region
of convergence, transform, and inverse transform are explained with examples. Various
properties of Laplace transform are also presented with examples.

The discussion on Laplace transform is continued in Chapter 15. Electric circuits can

be transformed into an s-domain by replacing voltage sources and current sources to

the s-domain and replacing capacitors and inductors to impedances. The circuit laws

and theorems that apply to resistive circuits also apply to s-domain circuits. The time
domain signal can be obtained by taking the inverse Laplace transform of the s-domain
representation. The differential equations in the time domain are transformed to algebraic
equations in the s-domain. The transfer function in the s-domain is defined as the ratio
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of the output signal in the s-domain to the input signal in the s-domain. The concept of
convolution is introduced with a number of examples. Also, finding the convolution using
Laplace transforms are illustrated in the same examples. Plotting the magnitude response
and phase response of a circuit or a system using the Bode diagram is introduced.

The first-order and the second-order analog filters that are building blocks for the
higher-order filters are presented in Chapter 16. The filters can be implemented by
interconnecting passive elements consisting of resistors, capacitors, and inductors.
Alternatively, filters can be implemented utilizing op amp circuits. Sallen and Key circuits
for implementing second-order filters are discussed as well, along with design examples.

The discussion on analog filter design is extended in Chapter 17. A filter is designed to
meet the specifications of the filter. The transfer function that satisfies the specification
is found. From the transfer function, the corner frequency and Q value can be found.
Then, the normalized component values and scaled component values are found. PSpice
simulations can be used to verify the design.

Orthogonal functions and the representation of signals as a linear combination of a set

of orthogonal functions are introduced in Chapter 18. If the set of orthogonal functions
consists of harmonically related sinusoids or exponential functions, the representation is
called the Fourier series. Fourier series representation of common signals, including the
square pulse train, triangular pulse train, sawtooth waveform, and rectified cosine and sine,
are presented in detail, with examples. The derivation and application of the time-shifting
property of Fourier coefficients are provided. In addition, the application of the Fourier
series representation in solving circuit problems are presented, along with examples.

As the period of a periodic signal is increased to infinity, the signal becomes nonperiodic,
the discrete line spectrums become a continuous spectrum, and multiplying the Fourier
coefficients by the period produces the Fourier transform, as explained in Chapter 19.
Important properties of the Fourier transform, including time shifting, frequency shifting,
symmetry, modulation, convolution, and multiplication, are introduced, along with
interpretation and examples.

Two-port circuits are defined and analyzed in Chapter 20. Depending on which of the
parameters are selected as independent variables, there are six different representations
for two-port circuits. The coefficients of the representations are called parameters. The six
parameters (z, y, h, g, ABCD, b) for two-port circuits are presented along with examples.
The conversion between the parameters and the interconnection of parameters are
provided in this chapter.

Instructor Resources

Cengage Learning’s secure, password-protected Instructor Resource Center contains help-
ful resources for instructors who adopt this text. These resources include Lecture Note
Microsoft PowerPoint slides, test banks, and an Instructor’s Solution Manual, with detailed
solutions to all the problems from the text. The Instructor Resource Center can be accessed
at https://login.cengage.com.

MindTap Online Course

Electric Circuits is also available through MindTap, Cengage Learning’s digital course plat-
form. The carefully crafted pedagogy and exercises in this textbook are made even more
effective by an interactive, customizable eBook, automatically graded assessments, and a
full suite of study tools.
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CHAPTER 6: CAPACITORS AND INDUCTORS +

E Chapter 6: Capacitors and Inductors %
Introduction - Capacitors - Series and Parallel Connection of Capacitors - Op Amp Integrator and

Op Amp Differentiator - Inductors - Series and Parallel Connection of Inductors - PSpice and
Simulink - Summary

Chapter 6 Lecture
Watch this lecture on Capacitors and Inductors.

Chapter 6 Quiz

After you've read Chapter b, answer the questions in this quiz.

No Submissions EEE iRl

B Chapter 6 Drop Box

Use this drop box to submit any other assignments your instructor has assigned to you.

No Submissions

As an instructor using MindTap, you have at your fingertips the full text and a unique
set of tools, all in an interface designed to save you time. MindTap makes it easy for instruct-
ors to build and customize their course so that they can focus on the most relevant mater-
ial while also lowering costs for students. Stay connected and informed through real-time
student tracking that provides the opportunity to adjust your course as needed based on
analytics of interactivity and performance. End-of-chapter assessments test students’ know-
ledge of topics in each chapter. In addition, a curated collection of lecture videos helps
students better understand key concepts as they progress through the course.

HOW DOES MINDTAP BENEFIT INSTRUCTORS?

* Instructors can build and personalize their courses by integrating their own content
into the MindTap Reader (like lecture notes or problem sets to download) or pull
from sources such as Really Simple Syndication (RSS) feeds, YouTube videos, websites.
and more. Control what content students see with a built-in learning path that can be
customized to your syllabus.

* MindTap saves time by providing instructors and their students with automatically
graded assignments and quizzes. These problems include immediate, specific feedback
so students know exactly where they need more practice.

e The Message Center helps instructors to contact students quickly and easily from
MindTap. Messages are communicated directly to each student via the communication
medium (email, social media, or even text messages) designated by the student.

e StudyHub is a valuable tool that allows instructors to deliver important information
and empowers students to personalize their experience. Instructors can choose to
annotate the text with notes and highlights, share content from the MindTap Reader,
and create flashcards to help their students focus and succeed.

e The Progress App lets instructors know exactly how their students are doing (and
where they might be struggling) with live analytics. They can see overall class
engagement and drill down into individual student performance, enabling them to
adjust their course to maximize student success.
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HOW DOES MINDTAP BENEFIT YOUR STUDENTS?

¢ The MindTap Reader adds the ability to have content read aloud, to print from the
MindTap Reader, and to take notes and highlight text, while also capturing them
within the linked StudyHub App.

e The MindTap Mobile App keeps students connected with alerts and notifications,
while also providing them with on-the-go study tools like flashcards and quizzing,
helping them manage their time efficiently.

* Flashcards are prepopulated to provide a jump start on studying, and students and
instructors also can create customized cards as they move through the course.

e The Progress App allows students to monitor their individual grades, as well as their
performance level compared to the class average. This not only helps them stay on
track in the course, but also motivates them to do more, and ultimately to do better.

¢ The unique StudyHub is a powerful, single-destination studying tool that empowers
students to personalize their experience. They can quickly and easily access all notes
and highlights marked in the MindTap Reader, locate bookmarked pages, review notes
and flashcards shared by their instructor, and create custom study guides.

For more information about MindTap for Engineering, or to schedule a demonstra-
tion, please call (800) 354-9706 or email higheredcs@cengage.com. For instructors outside
the United States, visit http://www.cengage.com/contact/ to locate your regional office.
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