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PREFACE

This book has been compiled from lecture notes and examples that [ have used in
my teaching of solid mechanics in various forms (including strength of materials,
stress and structural analysis), over many years. It is intended for undergraduate
and postgraduate engineering courses in which statics, solid mechanics and
structures are taught from an intermediary to advanced level. The contents should
serve most courses in mechanical, civil, aeronautical and materials engineering. The
approach employed is to intersperse theory with many illustrative examples and
exercises. As readers work through these it will become apparent what the
engineer’s practical interests in structural mechanics are. They will see that all
calculations made are related to a safe load-carrying capacity and the deformation
that materials used in structural design undergo. Amongst the specific design
considerations are: the choice of material, its physical shape, the nature of imposed
loading and its effect on the internal stress and strain. The loadings refer to:
tension, compression, bending, torsion and shear. Typical structures upon which
these loadings are applied in a multitude of applications include: bars, columns,
struts, tubes, vessels, beams, springs and frames.

The chapters follow an orderly sequence, loosely connected to their degree of
difficulty, in which the more fundamental material appears first. Thus, the
properties of areas, the conditions for static equilibrium, definitions of stress and
strain and linear elasticity theory underpin the structural analyses that follow.
Therein lie those structures commonplace in many applications: beam bending,
torsion of bars and tubes, buckling of struts and plates and tubes under pressure.
The final four chapters examine more advanced analytical techniques, including the
use of energy methods, plane stress and strain analyses, yield and failure criteria
and finite elements. The analyses given of stress, strain, load and deflection employ
various techniques with which the reader should soon become familiar. For
example, amongst these are: Mohr’s circle, the free-body diagram, Hooke’s law,
Macaulay’s step-function method and Castigliano’s theorems. The text illustrates
where and how to employ each technique effectively within a logical presentation
of the subject matter.

In general, a unique solution to the stress and strain borne by a loaded structure
will satisfy three requirements: equilibrium, compatibility and the boundary
conditions. Throughout this book these three conditions have been imposed upon
many structures to provide closed solutions. However, it may not always be
possible to achieve a closed-form solution as the loading and geometry become
more complex. The final chapter shows how the known stiffness matrix for simpler
types of finite elements can be embodied within a numerical solution to
displacement, stress and strain. The three aforementioned conditions are satisfied
but, because it is necessary to assume a displacement function, the solutions found



X PREFACE

remain approximations. Because finite elements cannot improve the accuracy of
structural analyses that appear in closed-form the latter are often used to validate
the numerical solutions as confidence measure. Finally, it must be mentioned that
all that appears in a book of this kind will serve the basic need to design safe
structures. The text revisits this basic objective throughout, particularly in its
examination of safe stress levels through the use of safety factors. The point is
often made that it is only through having a complete grasp of the subject can one
exercise a proper control upon the degree of safety required from a structure,
especially where the design imposes an economical use of material.

Worked examples and exercise sections have been devised and compiled by the
author to support the topics within each chapter. Some have been derived, often
with a conversion to SI units, from past examination papers set by institutions with
which the author has been associated, namely: Brunel, Dublin, Kingston and Surrey
Universities, and the Council of Engineering Institutions (CEI).

D. W. A. REES
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HISTORICAL OVERVIEW

I Introduction

The subject of structural mechanics has had a long history within the role it plays
in engineering design. Thus it has long been recognised that the engineer needs to
design a safe structure, be it a bridge, a pressure vessel, a ship or an aeroplane. Not
only is the choice of material important to this goal but also is the correct analysis
of the manner in which the external loads are to be supported. It is via this route
that a safety factor is decided upon, given other constraints such as minimising
weight while retaining stiffness and resistance to corrosion. Solid mechanics is
concerned with an understanding of what happens within a body when it is expected
to carry loads. We identify the external loads within applied forces, moments and
torques and their transmission into an internal stress and an accompanying strain.
Often, the subject is employed with a re-design, say in a beam (see Chapters 5 and
6), where the area is to be increased and the length shortened to reduce the
maximum stress and deflection to an acceptably safe level for a chosen material.
Alternatively, we may select a stronger, stiffer material where an alteration to shape
is not permitted if we are to increase the margin of safety. This book shows how
mechanics plays an important role within the analysis stage of structures required
to bear load often requiring many iterations before the synthesis stage can begin.

A wide variety of structures under different loading modes are presented within
the twelve chapters of this book. Throughout the reader will see the names of those
men whose contributions to engineering mechanics have shaped the subject into its
present form. What follows here is not intended as a detailed biography of each of
them, only to recognise that their associations with the following elements of this
text has ensured their immortality.

IT Units and Conventions

Firstly, within the SI system of units we acknowledge Sir Isaac Newton
(1642—-1727) [1] for our unit of force. A Newton (N) is the force required to give
a mass of 1 kg an acceleration of 1 m/s’. Our measures of energy and work
recognise the pioneering work of James Prescott Joule (1818-1889). The Joule (1)
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refers to the work done when a force of 1 N moves its point of application through
a distance of 1 m. Thus 1 J=1N x 1 m. The unit of energy is identical to that of
work. This we should expect from the conservation law: that energy can neither be
created nor destroyed but only converted from one form to another. For example,
in loading a beam, work is done in deflecting the beam and this is stored internally
as strain energy. James Watt (1736-1819) [2] is remembered for the unit Watt (W)
now assigned to power. Power is the rate of doing work: 1 W =1J/s. Two further
fundamental units that appear occasionally in solid mechanics (statics) are: the
measurement of temperature on the Kelvin scale (K), after Lord Kelvin
(1824-1907), and frequency in Hertz (Hz), where 1 Hz = 1 cycle/s, after Rudolph
Heinrich Hertz (1857—1894).

Other important derived units, which the reader will meet, refer to our measures
of stress and pressure. Both of these are measures of force intensity, referring to a
unit of area lying either normal or parallel to that force. The chosen unit of stress
and pressure in the SI system of units is the Pascal (Pa) where 1 Pa=1 N/m’, after
Blaise Pascal (1623—-1662). In fact we have become more accustomed to working
in multiples in this unit to make the numbers more manageable and meaningful.
Thus the pressure unit 1 bar = 10° Pa, is just a little less than atmospheric pressure
(1.01325 bar). The preferred stress unit is the Mega Pascal (MPa) where 1 MPa =
10° Pa. The use of the MPa has the advantage of providing the same numerical
stress value when a force in Newton is referred to a unit area of 1 mm®. That is, 1
MPa = 1 N/mm’. Strength, in the context of resisting failure from tension, tearing,
crushing and shear, refers to the limiting stress values of a material. Strength
therefore carries the same unit (MPa) as stress. Usually, a three-figure number
applies to the strengths of metals. Typically, the tensile yield strength of a low-
carbon steel is 300 MPa and its ultimate strength is 450 MPa.

In our definition of stress we refer the force to the original area despite the
small changes in dimensions brought about by strain. There are two types of stress:
direct and shear. The former arises when the force lies normal to the area and the
latter when it is tangential (see Chapter 3). The sense of each is given a sign so that
direct tensile stress is positive and direct compressive stress is negative. Clockwise
shear stress is positive and anticlockwise shear stress is negative. Strain is the
measure of the change to the original dimensions which occurs when a material is
stressed. It is defined as the non-dimensional ratio between the change in length
and the original length, often expressed as a percentage. Within the elastic limit
metallic materials remain stiff and dimensions will not have changed (i.e. strained)
by much more than 0.2% at the yield point. However, when the stresses exceed the
yield point a metal loses its spring-like behaviour and becomes plastic. The metal
lattice distorts permanently through shear slippage along planes most closely packed
with atoms. What we can see in the plastic range of a very ductile material like
aluminium are dimensional changes (strains) of the order of 50%. Similar strains
are reached when forming a steel sheet at a high speed in a press. The need to refer
the applied loading to the current dimensions as a material suffers larger strain was
recognised by Augustin-Louis Cauchy (1789-1857). It was he who first analysed
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stress where a force is applied obliquely to a plane. Resolving this force normal and
parallel to the plane he identified the stress state for a unit area of that plane. In
general, the stress state consists of three components: one normal and two shear
stresses for any plane with similar loading. In a three-dimensional analysis of stress
at a point within a body loaded in multiple directions we may take three such
reference planes to form a cube and then let their areas tend to zero. This reveals
that six stress components, from the total of nine acting over the three faces, are
independent and sufficient to define the stress at a point uniquely. A particularly
convenient representation of these components has been borrowed from relativity
theory (Albert Einstein, 1879—1955 [3]). Thus stress is denoted simply as o; where
i and j may take any value between | and 3. Stress at a point in the body is said to
have a tensorial character because it can only be defined completely when the
magnitude of the components o are connected to its reference planes set in the
orthogonal directions 1, 2 and 3. Einstein’s tensor subscript notation appears in
Chapters 10-13 alongside an equivalent matrix notation, the latter being more
popular nowadays for finite element analyses.

III Elasticity

The spring-like behaviour of metals, in which stress and strain are proportional, is
expressed within the law attributed to Robert Hooke (1635-1693) [4]. Hooke’s law
was initially concealed within a Latin anagram ceiiinosssttuu. The letters were
arranged later in 1678 into the phrase ut tensio sic vis, meaning: ‘as the extension,
so the force.” Written in this form Hooke’s law embraces all elastic structures given
in this book including: a bar in tension, a spring under load and a beam under
bending. All display the proportionality implied within Hooke’s secretive discovery.
Despite there being no surviving portraits of Robert Hooke his law has ensured his
immortality though, evidently, this would not have been of his own choosing! Once
its importance was recognised, there followed applications of Hooke’s law to
describe the elastic behaviour of many metallic materials under axial tension. So
it was that Thomas Young (1773-1829) [5] identified a modulus of elasticity
(symbol E) as the constant ratio of proportionality between axial stress and strain.
That each material has a different value of Young’s modulus provides a measure of
its spring-like stiffness. For example, the ratio shows that steel is three times stiffer
than aluminium with their respective moduli being 210 GPa and 70 GPa. Further
elastic constants were identified in the corresponding ratio between stress and strain
for a shear force and for a uniform hydrostatic pressure. These constants are called
the shear and bulk moduli, respectively (symbols G and K) . If we wish to extend
Hooke’s law to two- and three-dimensional stress states an account of the lateral
strain induced by an axial stress is also required. Simon-Denis Poisson (1781-1840)
recognised that a bar in tension will contract in its lateral dimensions as its length
increases. Poisson’s ratio (symbol v) is the constant ratio between the corresponding
lateral and axial elastic strains. The three moduli mentioned above, together with
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Poisson’s ratio, account for the elastic response of a material under any loading
combination. With restricted loading fewer constants are needed. Originally,
Gabriel Lamé (1795-1870) identified two independent (mathematical) elastic
constants even for the general loading condition. This is because of the relationships
that exist between the four engineering constants. The derivation of Lamé’s
constants is given in the book by August Edward Hough Love (1863-1940) [6].
Love also persues the history of the subject, as has Timoshenko [7] and others
[8-10], in greater detail than is given here. Among today’s engineers it is more
common to adopt the four engineering constants £, G, K and v that appear in this
book. Typical values for ten materials are given in Table 4.4, (see p. 113).

The theory of elasticity is concerned with these relations between stress and
strain and the two accompanying conditions: (i) that variations in stress remain in
equilibrium and (ii) strains are compatible with displacements. In addition (i) and
(i1) must be matched to the respective forces and displacements that are known to
exist around the boundary. This is the approach adopted throughout this book to
give the analytical solutions to stress, strain and displacements within loaded
bodies. However, it is recognised that not all problems lend themselves to a closed
solution. In Chapter 13 it is shown how the stated conditions can then be
implemented within a numerical procedure centred upon the structural stiffness
matrix [11], more commonly known as the finite element method [12].

IV Structures

Many have examined the manner in which particular structures deform elastically
under point and distributed loadings. The distinction can be made between large
displacements, in the case of an unstable structure and small displacements, that
conform to Hooke’s law, in a stable structure.

In the former category, Leonhard Euler (1707—-1783) [13] considered how a
long thin strut behaved when subjected to an axial compressive load. The solution
to this problem revealed that here Hooke’s law does not apply, in that the lateral
deflection within the length is not directly proportional to the load. Euler was able
to show mathematically that beyond a critical load a strut would become unstable
and buckle. Clearly, this is an important design consideration in engineering
construction whenever pillars and columns are used as supports. For shorter strut
designs, William John Macquorn Rankine (1820-1872) predicted the critical
buckling load empirically. He and Lewis Gordon showed that Euler’s mathematics
of buckling does not account for a limiting strength of the strut material. In fact,
Chapter 8 shows an empirical basis of strut design, is often the preferred approach.

In the latter category it is often necessary, when designing structures, to allow
for the smaller elastic deflections that occur beneath the loads that are applied to it.
Otto Mohr (1835-1918) proposed two theorems that enable both the slope and
deflection of a beam to be found when carrying lateral loading (see Chapter 6).
Mohr’s method employs the bending moment diagram for the applied loading and
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is particularly useful for cantilever beams. Later, Rudolf Freidrich Alfred Clebsch
(1833-1872) and William Herrick Macaulay (1853—1936) overcame the problem
of the discontinuities that arise in this diagram at concentrated load points. Their
elegant step-function approach can be applied to find deflections for a beam whose
loading is supported in any manner. One of the major advances to our understanding
of the deformation behaviour of any structure was to link the displacement and the
applied loading to its store of energy. Albert Castigliano (1847-1884) [14] set out
to discover the link within an equilibrium structure for his degree thesis in 1873.
He showed that both the load and the displacement beneath it were separate partial
derivatives of the structure’s complementary energy (see Chapter 10). This was a
remarkable achievement for a young Italian railway engineer of 28 years whose
interest in mechanics was largely self-taught. We shall see how his two theorems
are applied to a Hookean structure where strain energy and complementary energy
take on the same meaning. At that time it was realised that a statically determinate
structure need only its equilibrium equations when finding the displacements,
stresses and strains arising from the applied forces. On the other hand, a statically
indeterminate structure is insoluble from applying equilibrium principles alone,
where an additional compatibility condition is required. Examples of both these
structures appear throughout this text, where a similar division in determinancy
applies to any load-bearing device including frames, pressure vessels, beams,
torsion bars and tubes.

V Yielding

Long has it been known that a metallic material will continue to support load levels
beyond its elastic limit, a property that has ensured their survival in the face of
many man-made materials. What the early engineers were less clear about was how
a combination of loads would affect the yield point (see Chapter 12). We could
present the problem in general terms by asking what magnitudes of the six
independent components of the stress tensor are required to produce yielding?
Richard von Mises (1883—1953) [15] proposed a criterion of yielding admitting all
stress states. His criterion recognises that the stress tensor has invariants which do
not depend upon the co-ordinate directions. Because yielding should not depend
upon co-ordinates it becomes linked to critical values of the stress invariants. This
general condition for yielding envelopes many of the earlier proposals for yielding
under two- and three-dimensional stress states. For example, by omitting shear
stresses, James Clerk Maxwell (1831-1879) [16] believed intuitively that yielding
would commence when the root mean square of the principal stresses attains a
critical value. This mean value, natural to an electrical engineer, has provided us
with a dependable, simpler form of the von Mises yield criterion. There are
alternative yield criteria however. One, in particular, is based upon the maximum
shear stress in a simple tension test attaining a critical value at yield. Engineers have
always been confident in extending this approach to multi-axial yielding because
its predictions are known to be conservative. Thus, the original hypothesis of
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Charles Augustin Coulomb (1736-1806), re-discovered in 1865 by H. Tresca,
continues to this day to serve engineers with safe designs. Less use is made now of
the Barre de Saint-Venant (1797-1886) criterion, based upon a critical strain at
yield but, as is the case with many of these early engineers, his name will appear
elsewhere. In particular, Chapter 7 refers to the St.Venant torsion constant for
providing the angular twist of thin tubes and rectangular strips under torsion.

VI Concluding Remarks

The pioneering work of these early engineers, physicists and mathematicians sets
the scene for the research conducted today in many areas of solid mechanics.
Amongst these are: numerical techniques of stress analysis including the finite
element and boundary element methods, and the development of the mechanics
appropriate to plasticity, creep, fatigue and fracture. The continued interest in the
subject arises from the development of new materials to support any manner of
applied loading. We might require, for example, an enhanced strength from a
structure with reduced weight [17]. Alternatively, a life prediction is imposed upon
the design of a component that is expected to become damaged operating at a high
temperature under fluctuating loading [18].
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CHAPTER I

PROPERTIES OF AREAS

Summary: In this chapter the basic properties of areas that underpin many of the
topics that appear throughout this book are introduced. It will be seen later how the
present topic is applied to the cross-sections of beams in bending, shafts in torsion
and long struts under compressive loading. Examples are selected to show what is
meant by the terms ‘centroid’, the “first and second moments” of their plane section
areas. Two theorems are derived that enable the transfer of second moments of area
between parallel and perpendicular axes within a given cross-section. Both
analytical and graphical techniques are available for dealing with co-ordinate
rotations. Exercises are given to enable the reader to gain familiarity with these
terms and techniques.

1.1 Centroid and Moments of Area
The properties of a cross-section that resist loading applied externally loading are

the area A4 of that section and its first and second moments of area i and /
respectively, about the centroidal axes x and y shown in Figure 1.1.

X X

54

Figure 1.1 Elemental area d4 set in Cartesian axes x, y



