Advances in MICROBIAL ECOLOGY

Volume 8

Edited by

K. C. Marshall

Advances in MICROBIAL ECOLOGY

Volume 8

Edited by

K. C. Marshall

University of New South Wales Kensington, New South Wales, Australia The Library of Congress cataloged the first volume of this title as follows:

Advances in microbial ecology. v. 1-New York, Plenum Press c1977-

v. III. 24 cm.

Key title: Advances in microbial ecology, ISSN 0147-4863

1. Microbial ecology - Collected works.

OR100,A36 576'.1

77-649698

Library of Congress Catalog Card Number 77-649698 ISBN 0-306-41877-0

© 1985 Plenum Press, New York A Division of Plenum Publishing Corporation 233 Spring Street, New York, N.Y. 10013

All rights reserved

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher

BUM PRESS - NEW YORK AND LONDON

Printed in the United States of America

Advances in MICROBIAL ECOLOGY

Volume 8 Secretary of the system of TAMONS Manufacture 8 Million of the system of the

CHADA SAMOTOR

R. M. ADES University of Louisville Louisville, Komman

B. B. Jergengen Category of Marrise A of the Designal

On order of Water Institute of Science & Technology.

ADVANCES IN MICROBIAL ECOLOGY

Sponsored by the International Committee on Microbial Ecology (ICOME), a committee of the International Union of Microbiological Societies (IUMS) and the International Union of Biological Sciences (IUBS)

EDITORIAL BOARD

R. M. Atlas University of Louisville Louisville, Kentucky

B. B. Jørgensen
University of Aarhus
Aarhus. Denmark

J. H. Slater

University of Wales Institute of Science & Technology
Cardiff, Wales, United Kingdom

A Continuation Order Plan is available for this series. A continuation order will bring delivery of each new volume immediately upon publication. Volumes are billed only upon actual shipment. For further information please contact the publisher.

Contributors

R. M. Atlas

Martin Alexander, Laboratory of Soil Microbiology, Department of Agronomy, Cornell University, Ithaca, New York 14853

Trevor Duxbury, Department of Microbiology, University of Sydney, Sydney, New South Wales 2006, Australia

Karl-Erik Eriksson, Swedish Forest Products Research Laboratory, S-11486, Stockholm, Sweden

Hans van Gemerden, Laboratorium voor Microbiologie, University of Groningen, Haren, The Netherlands

J. Gijs Kuenen, Laboratorium voor Microbiologie, Delft University of Technology, Delft, The Netherlands

Adrian Lee, School of Microbiology, University of New South Wales, Kensington, New South Wales 2033, Australia

Lars G. Ljungdahl, Center for Biological Resource Recovery, Department of Biochemistry, University of Georgia, Athens, Georgia 30602

Lesley A. Robertson, Laboratorium voor Microbiologie, Delft University of Technology, Delft, The Netherlands

Joseph A. Robinson, The UpJohn Company, Kalamazoo, Michigan 49001

regas of natural habitats and chemostal culture by J. G. Kuenen L. L. F.

Preface

Advances in Microbial Ecology was established by the International Committee on Microbial Ecology (ICOME) as a vehicle for the publication of critical reviews selected to reflect current trends in the ever-expanding field of microbial ecology. Most of the chapters found in Advances in Microbial Ecology have been solicited by the Editorial Board. Individuals are encouraged, however, to submit outlines of unsolicited contributions to any member of the Editorial Board for consideration for inclusion in a subsequent volume of Advances. Contributions are expected to be indepth, even provocative, reviews of topical interest relating to the ecology of microorganisms.

With the publication of Volume 8 of Advances we welcome to the panel of contributors Martin Alexander, the founding editor of this series, who discusses the range of natural constraints on nitrogen fixation in agricultural ecosystems. Ecological aspects of cellulose degradation are discussed by L. G. Ljungdahl and K.-E. Eriksson, and of heavy metal responses in microorganisms by T. Duxbury. In his chapter, A. Lee considers the gastrointestinal tract as an ecological system, and comments on the possibility of manipulating this system. The complex interactions among aerobic and anaerobic sulfur-oxidizing bacteria are discussed in terms of natural habitats and chemostat culture by J. G. Kuenen, L. Robertson, and H. van Gemerden. Finally, J. A. Robinson presents the advantages and limitations in the use of nonlinear regression analysis in determining microbial kinetic parameters in ecological situations.

K. C. Marshall, Editor R. M. Atlas B. B. Jørgensen J. H. Slater

englishing.)

Determining Microbial Kinetic Furningters Using Northness Regression Analysis: Advantages and Limitations in Microbial Ecology

Joseph A. Robinson .

Conte	undamental Definitions Parameters versus Variables attentions	
	2. Linear versus Noulinear Models	
	se of binegrized Forms of Nonlinear Models	
49	1. Religionale	3.
Chapter 1	2. Limitations	
Bacteria	l Interactions among Aerobic and Anaerobic Sulfur-Oxidizi	ng
J. Gijs Kı	uenen, Lesley A. Robertson, and Hans van Gemerden	
15	Modely	
1. Introd	ypes of Bacteria	. 1
2. The T	ypes of Bacteria	1. 1
2.1.	The Coloness Sulful Bacteria	3
2.2.	The Phototrophic Sulfur Bacteria	11
3. Types	of Microbial Interaction	15
3.1.	Neutralism	16
3.2.	Mutualism Commensalism	16
3.4.	A money light	17
3.5.	Amensalism	17
3.5.	Competition	17
4 Comp	Competition Competition Involving Chemolithotrophs Competition Involving Phototrophs	17
4. Comp	Competition Involving Chemolithotrophs	19
4.2.	Competition Involving Phototrophs	28
4.3.	Other Selective Pressures	38
	Competition between Colorless and Phototrophic Sulfur	30
	Bacteria	40
5. Other	Interactions Involving the Sulfide-Oxidizing Bacteria	44
5.1.	Examples among the Chemolithotrophs	44
5.2.	Examples among the Phototrophs	47
6. Enrich	ment Studies	50
	Aerobic Enrichments of Colorless Sulfur Bacteria	50
	Anaerobic Enrichments of Sulfide-Oxidizing Bacteria	50
7. Conclu	usion	52

References.

Chapter 2

Determining Microbial Kinetic Parameters Using Nonlinear Regression Analysis: Advantages and Limitations in Microbial Ecology

Joseph A. Robinson

1.	Intro	oduction	61.
2.	Func	damental Definitions	62
	2.1.	Parameters versus Variables	63
	2.2.	Linear versus Nonlinear Models	63
3.	Use	of Linearized Forms of Nonlinear Models	64
1	3.1.	Rationale	64
7	3.2.		64
4.	Para	meter Estimation Strategies	69
	4.1.	The Function to Be Minimized	69
	4.2.	Least Squares Estimation	70
	4.3.	Methods of Minimizing Equation (6) for Nonlinear	
		Models	71
	4.4.	Weighted Least Squares (WLS) Analysis	81
	4.5.	Robust Regression	85
	4.6.	Alternative Objective Functions for the Estimation of	
		Microbial Parameters	87
	4.7.	Microbial Parameters Jackknife Estimation	88
	4.8.	Bootstrapping	90
5.	Resid	Bootstrapping medical duals Analysis males and a second se	91
. 1)	5.1.	Influence of Correlated Measurement Errors on	
		Parameters Estimated via Least Squares Analysis	92
	5.2.	Number of Data Points Required for Detection of	
		Correlated Errors.	92
6.	Mod	el Discrimination mal Experimental Design	92
7.	Opti	mal Experimental Design	95
	7.1.	Optimal Experiments for Model Discrimination	95
	7.2.	Optimal Experiments for Parameter Estimation	96
	7.3.	Experiments of Optimal Duration	98
8.	Some	e Models of Interest to Microbial Ecologists	99
	8.1.	Exponential Models	99
	8.2.	Michaelis-Menten Model	101
	8.3.	Michaelis-Menten Model Other Uptake Models Growth Models	104
	8.4.	Growth Models	105
32	8.5.	Models with More Than One Independent Variable	108
9.	Conc	cluding Remarks	109
to She	Refer	rences	110

Contents

	Ch	a	p	ter	3
--	----	---	---	-----	---

Neglected Niches: Tl	ne Microbial	Ecology	of the	Gastrointestinal	Tract
Adrian Lee					

1.	Introduction	115
	Species Diversity in the Gastrointestinal Tract 2.1. Factors Influencing Species Diversity 2.2. The Host as a Contributor to and a Beneficiary of the Microbial Ecosystem of the Intestinal Tract	116 117
3.	Colonization Resistance 3.1. Competition for Nutrients 3.2. Toxic Metabolites 3.3. Bacterial Barriers	126
4.	Perturbation of the Gut Ecosystem 4.1. Consequences of the Vacated Niche 4.2. Examples of Natural Perturbation 4.3. Experimental Perturbations of the Gut Ecosystem	127 128 128
	Consequences of an Immature Microbiota 5.1. The Neonatal Animal 5.2. The Infant Bowel 5.3. Specific Pathogen Free (SPF) Animals Immune Mechanisms	136
7.	Adaptation to the Ecosystem: Important Determinants of Microbial Pathogenicity 7.1. Adhesion to Intestinal Surfaces 7.2. Mucus Colonization 7.3. Nutrient Avidity	143 143
8.	Behaviorism in the Intestinal Tract: The Importance of What Organisms Do Rather Than What They Are	147
9.	Man versus Mouse: The Relevance of Current Concepts of Intestinal Ecology	150
10.	Manipulation of the Intestinal Ecosystem 10.1. Replacement or Preseeding of the Premature or	
	Perturbed Gut Ecosystem	154
11.	Conclusion References	

	Contents
Chapter 4	Chart
Ecological Constraints on Nitrogen Fixation in Agricultural Ecosy	ystems
Martin Alexander	delina
1. Introduction	. 163
2. The Rhizobium Inoculum	164
3. Establishment of Rhizobium	. 166
4. Survival of Rhizobium in Soil	. 168
5. Biological Stresses on Rhizobium	. 169
6. Abiotic Stresses on Rhizobium	. 171
6.1. Acidity 6.2. Desiccation 6.3. Temperature 6.4. Salinity and Alkalinity	. 171
6.2. Desiccation	. 173
6.3. Temperature	. 173
6.4. Salinity and Alkalinity	. 175
6.5. Fungicides	. 175
7. Limitations on Nitrogen Fixation by Cyanobacteria	
8. Conclusion	
\$61 References 1824	. 178
parequences of an Immaume Microbiota	
L. It is Neonatal Animal	
Chapter 5	
Ecological Aspects of Heavy Metal Responses in Microorganisms	
Trevor Duxbury	
lapresson to the Tropy stems Important Descriminants of	
I. Introduction yfteinskeddi't farfare	185
2. Effects of Heavy Metals on Microbial Communities	
4-12.1. Abundance northwood pour A	. 187
30 2.2. Diversity	
2.3. Metal Tolerance	191
2.4. Evolution and Gene Transfer	. 196
3. Effects of Heavy Metals on Microbially Mediated	
Processes 950nd / Justine / To approve Joseph and Traudivi Rustray na	. 199
3.1. Carbon Fixation	. 199
3.2. Methanogenesis TOTETONE LETTERING Settles republished	
3.3. Respiration many and to synthese affine in in many depth. I	
3.4. Litter Decomposition	
3.5. Dinitrogen Fixation	
3.6. Other Nitrogen Transformations	
4. Effects of Heavy Metals on Various Interactions	
4.1. Substrate Interactions	. 206

Contents	xiii
4.2. Predator-Prey Interactions 4.3. Interfacial Interactions 4.4. Pathogenic Interactions 5. Common Problems 5.1. Field-Oriented Studies 5.2. Laboratory-Oriented Studies 5.3. Problems in General 6. Future Prospects References	209 212 213 216 216 219 222 227 228
References	220
Chapter 6	
Ecology of Microbial Cellulose Degradation	
Lars G. Ljungdahl and Karl-Erik Eriksson	
1. Introduction	237
	238
	242
5.5.	244
	246
	247
[20] 그리트	253
	270
	271
The control of the co	272
the management of the control of the	278
References	279
Index	301

Microbial Interactions among Aerobic and Anaerobic Sulfur-Oxidizing Bacteria

J. GIJS KUENEN, LESLEY A. ROBERTSON, and HANS VAN GEMERDEN

1. Introduction

Life on the earth is dependent on the balanced recycling of various elements. Well-known examples are the carbon, nitrogen, and sulfur cycles. Although these cycles are often discussed separately, they are, in fact, closely linked. This is due not only to the fact that organic matter contains these elements, but also to the role that nitrate or sulfate can play in replacing oxygen as an electron acceptor for the mineralization of organic compounds. Thus, during the breakdown of organic matter. nitrate is reduced to ammonia or nitrogen, and sulfate to sulfide. Both the ammonia and the sulfide can be reoxidized. Since this chapter is mainly concerned with the ecology of bacteria involved in the sulfur cycle, a brief discussion of this cycle is appropriate (Pfennig and Widdel, 1982; Kuenen, 1975; Trudinger, 1982). Sulfate serves as the sulfur source for the biosynthesis of organic sulfur compounds by plants and microorganisms using the process known as assimilatory sulfate reduction (Fig. 1). In biological materials, sulfur is usually present in its most reduced form (e.g., as sulfide in amino acids such as cysteine). During the decomposition of this material under aerobic conditions, the organic sulfide is initially oxidized and subsequently released as sulfate. Under anaerobic

J. GIJS KUENEN and LESLEY A. ROBERTSON • Laboratorium voor Microbiologie, Delft University of Technology, Delft, The Netherlands. HANS VAN GEMER-DEN • Laboratorium voor Microbiologie, University of Groningen, Haren, The Netherlands.

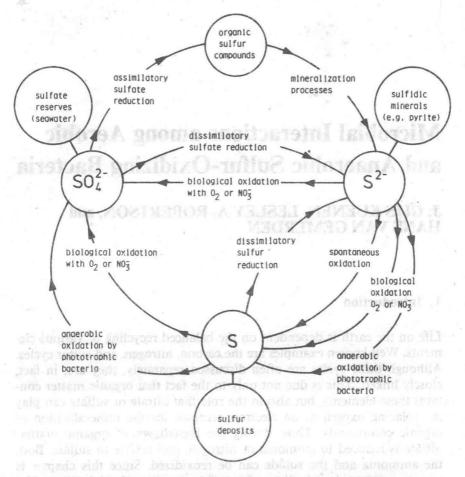


Figure 1. The sulfur cycle. [Adapted from Bos and Kuenen (1983).]

conditions, the sulfide is liberated as hydrogen sulfide. Another important source of hydrogen sulfide is from dissimilatory sulfate reduction, whereby sulfate-reducing bacteria can use sulfate as their electron acceptor for the oxidation of organic compounds or molecular hydrogen. Some sulfide precipitates as ferrous sulfide or forms pyrite, but much of it is reoxidized via elemental sulfur to sulfate (Bos and Kuenen, 1983). This can be done under anaerobic conditions in the light by phototrophic sulfur-oxidizing bacteria, which use the sulfide as an electron donor in the generation of reducing power for the reduction and assimilation of carbon dioxide (Truper and Fischer, 1982). By this process, the electrons produced in mineralization are rechanneled into organic compounds.

Elemental sulfur, which may be formed as an intermediate, can also be reduced to sulfide by sulfur-reducing heterotrophs. Under aerobic or denitrifying conditions hydrogen sulfide can also be spontaneously oxidized by oxygen or nitrate if these substances interact at high enough concentrations. At lower concentrations of oxygen (or nitrate), sulfide is usually oxidized by the colorless sulfur bacteria to give sulfate (Kelly, 1982). During this process, the majority of the electrons from the sulfide are used to reduce oxygen or nitrate to give water or molecular nitrogen, respectively. Some electrons can be used for CO₂ reduction and be recycled into organic compounds. Thus, it is the complementary action of the two types of oxidative bacteria with the sulfur and sulfate-reducing bacteria that maintains most of the global sulfur cycle. However, it should be remembered that industrial pollution and geothermal processes also contribute substantially.

Both the phototrophic and colorless sulfur bacteria comprise large, heterogeneous groups of organisms. Whereas the difference between the two is obviously based on the possession or lack of photosynthetic pigments, the groups of different species can be further subdivided by their degree of physiological specialization or versatility, type of photosynthetic pigmentation, and other characteristics, for example, the ability to denitrify. These subdivisions are dealt with in Section 2, and are summarized in Tables I and II.

The sulfide-oxidizing bacteria are dependent on reduced sulfur compounds for growth, and therefore are found in environments where sulfate reduction occurs or where a geological source of sulfur compounds is available. Since most of the colorless sulfur bacteria are dependent on oxygen, they often live at the interface between aerobic and anaerobic zones where low concentrations of oxygen and sulfide can coexist. Examples of such environments are the aerobic surfaces of otherwise anaerobic freshwater marine sediments and the interface between the aerobic and anaerobic zones of stratified bodies of water. An example of such an interface is found in Solar Lake (Sinai), where sulfide and oxygen coexist over a depth of a few centimeters (Fig. 2). In sediments, this layer can be as narrow as 0.1 mm or less (Jørgensen, 1982). Under special circumstances, blooms of colorless sulfur bacteria (e.g., Beggiatoa mats) can be found on the surface of anaerobic sediments. When light can reach these interfaces, the phototrophic sulfur bacteria may thrive, and in many stratified lakes annual blooms of a variety of these phototrophs occur. These blooms can produce intensely colored green, brown, or red layers sometimes as thick as 1 m. Blooms of these organisms can also be found in the top layers of light-exposed sediments, where they can, for example, form a discrete layer in the complex microbial communities of algal mats.

In our laboratories we have been investigating the occurrence and

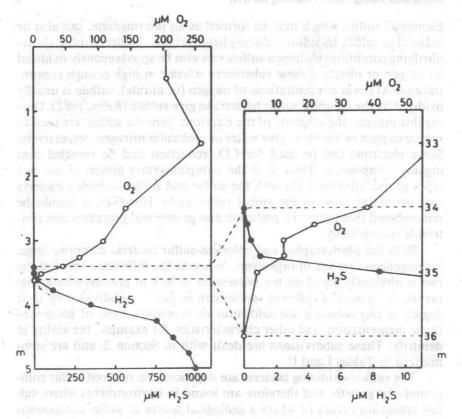


Figure 2. Concentrations of sulfide and oxygen in Solar Lake (Sinai) as a function of depth. Oxygen and sulfide can be seen to coexist at the interface. [Jørgensen et al. (1979).]

ecological niches of the seemingly endless variety of species among the colorless and phototrophic bacteria. In addressing these questions, we have tried to consider the abiotic environmental parameters together with some of the biotic variables, especially the interactions that occur among the phototrophic and colorless sulfur bacteria as well as between the two groups. Our approach has been through an ecophysiological study of pure cultures of these organisms under conditions that may be relevant to their existence in nature. As a second step, we have studied mixtures of the pure cultures of these organisms, and in a few cases we have also done some field studies to verify predictions made in the laboratory.

One of the most important environmental pressures imposed on microorganisms is that of nutrient or light limitation. An understanding of bacterial response to these limitations and their survival under such conditions is crucial to a better knowledge of microbial ecology. For the study of the ecophysiology and interactions of microorganisms under nutrient limitation in the laboratory, continuous cultivation in a chemostat has been an indispensable technique. In our investigation of the interactions between the different types of sulfur bacteria, this technique has allowed us to study the physiology of test organisms under a variety of nutrient limitations, and also to use the chemostat as a device by which the selective pressures exerted on species competing for limiting nutrients or light can be simulated and amplified.

In Section 4 we describe a selected number of examples of microbial competition involving the sulfur-oxidizing bacteria. It will become clear that many of the phototrophs and the colorless sulfur bacteria are very well suited for use as model organisms for the exploration of the basic principles that determine the survival value of different metabolic strategies in the struggle for existence.

2. The Types of Bacteria

2.1. The Colorless Sulfur Bacteria

The group of organisms known as the colorless sulfur bacteria make up a heterogeneous collection of Gram-negative bacteria, which includes intensively studied species, such as some members of the genus *Thiobacillus*, and others that have not been obtained in pure culture and have only been studied superficially, such as the genus *Thiobacterium* (Vishniac, 1974; la Rivière, 1974). The various physiological types represented within the group are shown in Table I. Colorless sulfur bacteria are found at a wide range of temperatures, pH values, and degrees of aerobiosis or anaerobiosis. Some are obligate chemolithoautotrophs (e.g., *T. neapolitanus*), some can only oxidize sulfur compounds if they are supplied with an organic carbon source (e.g., *T. perometabolis*), while others are capable of autotrophic, heterotrophic, or mixotrophic growth (e.g., *T. novellus*). The group is commonly subdivided on the basis of the degree of physiological specialization shown by the various species (Tables I and III).

2.1.1. The Obligate Chemolithoautotrophs

These highly specialized species can only grow autotrophically. They must use an inorganic source of energy and obtain cell carbon from carbon dioxide fixation via the Calvin cycle. Most, however, are able to utilize small amounts of exogenous organic carbon (Matin, 1978), which can serve as a source of carbon, but not energy. The citric acid cycle in these organisms is inoperative, its enzymes only serving for biosynthesis. With