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PREFACE TO THE SECOND EDITION

perhaps it is timely to reflect on the ambitions and structure of the text in the light of
ecent advances in the subject. In the first edition three recurring themes were: (i) a pref-
erence for working in real space rather than Fourier space, wherever possible; (ii) the importance
of giving equal weight to the large and small scales in the discussion of homogeneous turbulence;
and (iii) a note of caution as to what may be achieved through the use of direct numerical simu-
lations (DNS) of turbulence. As to the first two themes, developments in the intervening years
have, by and large, tended to reinforce my particular preferences. However, I have been proved
overly pessimistic on the third point; the relentless rise in computing power has allowed DNS to
become the preferred means of attack for the theoretician interested in the fundamental structure
of turbulence, though of course DNS remains of limited value to the engineer or applied scientist
interested in practical problems. In any event, the text has been modified to reflect this growing
importance of DNS in fundamental studies.

The motivation for a second edition has been the desire to simplify the text where possible,
while updating those sections where the subject has moved on. As a consequence, significant parts
of Sections 5.1.3, 5.3.6, 6.3, 6.6, 9.2, 9.5, and Chapter 10 have been rewritten, and a new section,
6.2.10, has been introduced on passive scalar mixing. Nevertheless the spirit of the book remains,
I hope, unchanged; a desire to bridge the gap between the elementary coverage of turbulence
found in undergraduate texts and the advanced (if often daunting) discussion in monographs on
the subject. Above all, I have tried at all times to combine the maximum of physical insight with
the minimum of mathematical detail.

Once again it is a pleasure to acknowledge the help of friends and colleagues, particularly
the many stimulating discussions I continue to have with Julian Hunt, Yukio Kaneda, Per-Age
Krogstad, and many colleagues in Cambridge. Oxford University Press were, as always, a pleasure
to work with.

R:)ughly 10 years have passed since the publication of the first edition of this book, and

P. A. Davidson
Cambridge, 2014
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PREFACE TO THE FIRST EDITION

urbulence is all around us. The air flowing in and out of our lungs is turbulent, as is the

natural convection in the room in which you sit. Glance outside; the wind which gusts

down the street is turbulent, and it is turbulence which disperses the pollutants that belch
from the rear of motor cars, saving us from asphyxiation. Turbulence controls the drag on cars,
aeroplanes, and bridges, and it dictates the weather through its influence on large-scale atmos-
pheric and oceanic flows. The liquid core of the earth is turbulent, and it is this turbulence which
maintains the terrestrial magnetic field against the natural forces of decay. Even solar flares are
a manifestation of turbulence, since they are triggered by vigorous motion on the surface of the
sun. It is hard not to be intrigued by a subject which pervades so many aspects of our lives.

Yet curiosity can so readily give way to despair when the budding enthusiast embarks on ser-
ious study. The mathematical description of turbulence is complex and forbidding, reflecting the
profound difficulties inherent in describing three-dimensional, chaotic processes.

This is a textbook and not a research monograph. Our principal aim is to bridge the gap be-
tween the elementary, heuristic accounts of turbulence to be found in undergraduate texts, and
the more rigorous, if daunting, accounts given in the many excellent monographs on the sub-
ject. Throughout we seek to combine the maximum of physical insight with the minimum of
mathematical detail.

Turbulence holds a unique place in the field of classical mechanics. Despite the fact that the
governing equations have been known since 1845, there is still surprisingly little we can predict
with relative certainty. The situation is reminiscent of the state of electromagnetism before it was
transformed by Faraday and Maxwell. A myriad tentative theories have been assembled, often
centred around particular experiments, but there is not much in the way of a coherent theoretical
framework.! The subject tends to consist of an uneasy mix of semi-empirical laws and deter-
ministic but highly simplified cartoons, bolstered by the occasional rigorous theoretical result.
Of course, such a situation tends to encourage the formation of distinct camps, each with its own
doctrines and beliefs. Engineers, mathematicians, and physicists tend to view turbulence in rather
different ways, and even within each discipline there are many disparate groups. Occasionally re-
ligious wars break out between the different camps. Some groups emphasize the role of coherent
vortices, while others downplay the importance of such structures and advocate the use of purely

" One difference between turbulence and nineteenth-century electromagnetism is that the latter was eventually
refined into a coherent theory, whereas it is unlikely that this will ever occur in turbulence.
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statistical methods of attack. Some believe in the formalism of fractals or chaos theory, others do
not. Some follow the suggestion of von Neumann and try to unlock the mysteries of turbulence
through massive computer simulations, others believe that this is not possible. Many engineers
promote the use of semi-empirical models of turbulence; most mathematicians find that this is
not to their taste. The debate is often vigorous and exciting and has exercised some of the finest
twentieth-century minds, such as L.D. Landau and G.I. Taylor. Any would-be author embarking
on a turbulence book must carefully pick his way through this minefield, resigned to the fact that
not everyone will be content with the outcome. But this is no excuse for not trying; turbulence is
of immense importance in physics and engineering, and despite the enormous difficulties of the
subject, significant advances have been made.

Roughly speaking, texts on turbulence fall into one of two categories. There are those which
focus on the turbulence itself and address such questions as, where does turbulence come from?
What are its universal features? To what extent is it deterministic? On the other hand, we have
texts whose primary concern is the influence of turbulence on practical processes, such as drag,
mixing, heat transfer, and combustion. Here the main objective is to parameterize the influence
of turbulence on these processes. The word modelling appears frequently in such texts. Applied
mathematicians and physicists tend to be concerned with the former category, while engineers
are necessarily interested in the latter. Both are important, challenging subjects.

On balance, this text leans slightly towards the first of these categories. The intention is to
provide some insight into the physics of turbulence and to introduce the mathematical appar-
atus which is commonly used to dissect turbulent phenomena. Practical applications, alas, take a
back seat. Evidently such a strategy will not be to everyone’s taste. Nevertheless, it seems natural
when confronted with such a difficult subject, whose pioneers adopted both rigorous and heuris-
tic means of attack, to step back from the practical applications and try and describe, as simply as
possible, those aspects of the subject which are now thought to be reasonably well understood.

Our choice of material has been guided by the observation that the history of turbulence has,
on occasions, been one of heroic initiatives which promised much yet delivered little. So we have
applied the filter of time and chosen to emphasize those theories, both rigorous and heuristic,
which look like they might be a permanent feature of the turbulence landscape. There is little
attempt to document the latest controversies, or those findings whose significance is still un-
clear. We begin, in Chapters 1 to 5, with a fairly traditional introduction to the subject. The
topics covered include: the origins of turbulence, boundary layers, the log-law for heat and mo-
mentum, free-shear flows, turbulent heat transfer, grid turbulence, Richardson’s energy cascade,
Kolmogorov’s theory of the small scales, turbulent diffusion, the closure problem, simple closure
models, and so on. Mathematics is kept to a minimum and we presuppose only an elementary
knowledge of fluid mechanics and statistics. (Those statistical ideas which are required are intro-
duced as and when they are needed in the text.) Chapters 1 to 5 may be appropriate as background
material for an advanced undergraduate or introductory postgraduate course on turbulence.

Next, in Chapters 6 to 8, we tackle the somewhat refined, yet fundamental, problem of homo-
geneous turbulence. That is, we imagine a fluid which is vigorously stirred and then left to itself.
What can we say about the evolution of such a complex system? Our discussion of homogeneous
turbulence differs from that given in most texts in that we work mostly in real space (rather than
Fourier space) and we pay as much attention to the behaviour of the large, energy-containing
eddies as we do to the small-scale structures.

Perhaps it is worth explaining why we have taken an unconventional approach to homoge-
neous turbulence, starting with our slight reluctance to embrace Fourier space. The Fourier trans-
form is conventionally used in turbulence because it makes certain mathematical manipulations
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easier and because it provides a simple (though crude) means of differentiating between large
and small-scale processes. However, it is important to bear in mind that the introduction of the
Fourier transform produces no new information; it simply represents a transfer of information
from real space to Fourier space. Moreover, there are other ways of differentiating between large
and small scales, methods which do not involve the complexities of Fourier space. Given that
turbulence consists of eddies (blobs of vorticity) and not waves, it is natural to ask why we must
invoke the Fourier transform at all. Consider, for example, grid turbulence. We might picture this
as an evolving vorticity field in which vorticity is stripped off the bars of the grid and then mixed
to form a seething tangle of vortex tubes and sheets. It is hard to picture a Fourier mode being
stripped off the bars of the grid! It is the view of this author that, by and large, it is preferable
to work in real space, where the relationship between mathematical representation and physical
reality is, perhaps, a little clearer.

The second distinguishing feature of Chapters 6-8 is that equal emphasis is given to both large
and small scales. This is a deliberate attempt to redress the current bias towards small scales in
monographs on homogeneous turbulence. Of course, it is easy to see how such an imbalance
developed. The spectacular success of Kolmogorov’s theory of the small eddies has spurred a vast
literature devoted to verifying (or picking holes in) this theory. Certainly it cannot be denied that
Kolmogorov’s laws represent one of the milestones of turbulence theory. However, there have
been other success stories too. In particular, the work of Landau, Batchelor, and Saffman on the
large-scale structure of homogeneous turbulence stands out as a shinning example of what can
be achieved through careful, physically motivated analysis. So perhaps it is time to redress the
balance, and it is with this in mind that we devote part of Chapter 6 to the dynamics of the large-
scale eddies. Chapters 6 to 8 may be suitable as background material for an advanced postgraduate
course on turbulence, or can act as a reference source for professional researchers.

The final section of the book, Chapters 9 and 10, covers certain special topics rarely discussed
in introductory texts. The motivation here is the observation that many geophysical and astro-
physical flows are dominated by the effects of body forces, such as buoyancy, Coriolis, and Lorentz
forces. Moreover, certain large-scale flows are approximately two dimensional and this has led to
a concerted investigation of two-dimensional turbulence over the last few years. We touch on the
influence of body forces in Chapter 9 and two-dimensional turbulence in Chapter 10.

There is no royal route to turbulence. Our understanding of it is limited and what little we
do know is achieved through detailed and difficult calculation. Nevertheless, it is hoped that this
book provides an introduction which is not too arduous and which allows the reader to retain at
least some of that initial sense of enthusiasm and wonder.

It is a pleasure to acknowledge the assistance of many friends and colleagues. Alan Bailey,
Kate Graham, and Teresa Cronin all helped in the preparation of the manuscript, Jean Delery
of ONERA supplied copies of Henri Werle’s beautiful photographs, while the drawing of the
cigarette plume and the copy of Leonardo’s sketch are the work of Fiona Davidson. I am grateful
to Julian Hunt, Marcel Lesieur, Keith Moffatt, and Tim Nickels for many interesting discussions
on turbulence. In addition, several useful suggestions were made by Ferit Boysan, Jack Herring,
Jon Morrison, Mike Proctor, Mark Saville, Christos Vassilicos, and John Young. Finally, I would
like to thank Stephen Davidson who painstakingly read the entire manuscript, exposing the many
inconsistencies in the original text.

P. A. Davidson
Cambridge, 2003
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PART 1

The classical picture of turbulence

Cross section through a turbulent jet carrying a passive scalar. The colours indicate the sca-
lar concentration. Note that the edge of the jet is highly convoluted. (See the discussion in
Section 4.3.1.)

Image courtesy of P.E. Dimotakis, California Institute of Technology.
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