MICHAEL BELL

INCREMENTAL

SOFTWARE

ARCHITECTURE
r

A METHOD FOR SAVING FAILING IT
IMPLEMENTATIONS

Michael Bell

WILEY

Copyright © 2016 by Michael Bell. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400), fax
(978) 646-8600, or on the Web at www.copyright.com. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher nor
author shall be liable for any loss of profit or any other commercial damages, including but not limited to
special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at (317)
572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http://booksupport.wiley.com. For more information about Wiley products,
visit www.wiley.com.

Library of Congress Cataloging-in-Publication Data is Available:

978-1-119-11764-3 (hardback)
978-1-119-21368-0 (ePDF)
978-1-119-21369-7 (ePUB)

Cover design: Wiley
Cover image: © iStock.com/Grotmarsel

Printed in the United States of America
10987 65 43 21

Nothing could be more inspiring than a chat with a friend or a colleague who not
only ponders about the world that we live in, but also bestows upon others knowl-
edge and wisdom. Special thanks to the individuals who inspired and offered great
perspectives for the completion of this book: Isabella Tugman, Lisa Nathan, Monica
Roman Gagnier, Edward Kelly, David Zaffery, John Beaufait, Carlos Melendez,
Sandy Tugman, and Michael Julian.

Michael Bell is an enterprise solution provider with twenty-eight years of proven
hands-on experience in the space of Business and Technical Architecture Modeling.
He has consulted for a large number of institutions, such as J.P. Morgan, Chase,
Prudential, Citibank, USB, American Express, AIG, and the U.S. government.

Michael is also the author of best-selling service-oriented modeling books
promoting product time-to-market, consolidation, agility, reuse, and expenditure
reduction. To support challenging business strategies, his expertise offers a variety of
enterprise integration solutions for back-end and customer-facing systems, distributed
and federated across large lines of business and enterprise domains.

xi

ACKNOWLEDGMENTS ix
ABOUT THE AUTHOR xi

CHAPTER 1 The Need for Incremental Software Architecture 1

PART ONE Why Do Enterprise Systems Fall'? 1

L e R

CHAPTER 2 What Is a Failing Enterprise System? Is It Management's Fault? 13

CHAPTER 3 Technological System-Level Failures 23

PART TWO End State Architecture Dlscovery and Analysis 35

~~~~~~~~~~ N A R R s R R R e

CHAPTER 4 System Fabric Discovery and Analysis 39
CHAPTER 5 Application Discovery 55

CHAPTER 6 Application Mapping 67

PART THREE—End-State Architecture Decomposition 83
T e S L R y

CHAPTER 7 End-State Architecture Structural Decomposition through
Classification 85

CHAPTER 8 Business Analysis Drives End-State Architecture Structural
Decomposition 103

CHAPTER 9 Technical Analysis Drives End-State Architecture Structural
Decomposition 119

CHAPTER 10 Business Views Drive End-State Architecture Decomposition 145

CHAPTER 11 Environment Behavior Drives End-State Architecture
Decomposition 161

vii



viii CONTENTS

PART FOUR—End-State Architecture Verification 179

CHAPTER 12 Design Substantiation 181
CHAPTER 13 Introduction to End-State Architecture Stress Testing 197

CHAPTER 14 End-State Architecture Stress Testing Driven by Pressure
Points 223

CHAPTER 15 Enterprise Capacity Planning for End-State Architecture 235

INDEX 253



echnical books rarely begin with conclusions. But the impetus for this book is so

strong that it must be revealed at the onset. So, with no time to spare, here is the

bottom line: IT and business organizations, in their current incarnations, must
be eliminated. Replacing them with regional,! nimble, and smaller management and
technical groups, called Micro-Organizations in this book, will be of immense benefit
to the product and software development community.

Mere replacement is not enough, however. Merging a Micro-IT organization
with its Micro-Business organization counterpart could diminish the constant battle
for alignment efforts and improve firm-wide communication. Moreover, unifying
smaller business and IT groups to provide rapid enterprise solutions could reduce
the long-running frictions between the two, and create a more productive work
environment.

This vision accentuates the need to break down the traditional enterprise centralized
management into smaller decentralized organizations to boost efficiency and speed up
decision-making. Consequently, regional, small-scale, and agile Micro-Organizations
would seize governance and best practices responsibilities to deliver practical and
superior systems.

As a result, joint business and IT teams would operate autonomously to deliver
and integrate products on time and on budget. Rather than reporting to enterprise
executives, teams would report to regional management, which understands the distinct
culture and requirements of local business operations.?

Such a shift in organizational thinking would eliminate the difficulties of trying to
conserve a centralized management structure that is slow to respond to critical business
events. A lightweight Micro-Organization would then become proactive, reducing the
staggering cost of enterprise policing and governance. Enterprise-wide technology stan-
dardization, therefore, would be the practice of the past. And enterprise-wide architecture
best practices and standards would cease to exist.

This does not imply that enterprise-wide architecture groups would vanish, too.
The charter of such a design organization would shift to a more tangible one.
For that reason, architects should focus on providing certified architecture blueprints
guaranteed to work in a production environment.

As you progress through the book, keep the Micro-Organizations idea in mind.
And if time allows, imagine a workplace that accepts nothing less than devoting a// its
precious energy to producing high-quality and practical products.



2 INCREMENTAL SOFTWARE ARCHITECTURE

For now, let us focus on chief thrust of this book: presenting a new approach to enter-
prise software design, development, and integration— Incremental Software Architecture.

The new method unveiled in the chapters that follow is suited for all enterprises,
regardless of their structure and organization. Pursuing the incremental software
architecture approach also may drive organizations to break down their convoluted
structures into agile Micro-Organizations, accelerating time to market.

In the meantime, though, there is a compelling reason to understand what incre-
mental software architecture is, and how it can be employed to ward off the deploy-
ment of failing systems to production environments. This new approach could also
be pursued to save underperforming systems and improve enterprise integration of
applications, middleware, and network infrastructure.

Now, we’ve got our work cut out for us. Let’s roll up our sleeves and move on.

End-State Enterprise Architecture: A Risky Proposition

The design phase of enterprise applications and infrastructure integration calls for
the delivery of an end-state architecture. Architects, typically senior designers, sub-
mit appropriate artifacts to communicate the future state of a production environment
to the business, software development, and operations groups. Specifically, the delivery
includes diagrams illustrating an ecosystem in which applications and middleware run
on networks, exchanging messages to execute business transactions.

Again, end-state architecture is all about future technological implementation, integration,
and distribution of business services to consumers, empowered by enabling infrastructure, to
ensure enterprise operation continuity and stability.

Software architects who deliver an end-state architecture diagram typically claim
that the design is solid and unbreakable. In many cases, however, such an artifact
merely illustrates intangible and unproven deployment that later may fail to operate
in production, despite the vast knowledge and experience of its creators.

Why is this architecture unproven? A theoretical enterprise end-state architec-
ture diagram guarantees nothing. Would a depiction of a production environment
meet business and technical requirements? Would the illustrated applications operate
flawlessly in production? Would service level agreements (SLAs) be fulfilled?

No one really knows.

The consequences of such a theoretical and risky design could be devastating to
the business organization that is unable to launch software products on time in harsh
market conditions. The skyrocketing cost of the software development efforts that fol-
low an unproven enterprise end-state architecture could be calamitous, and the loss of
revenue is typically vast.

Do Not Invest in Unproven Enterprise End-State Architecture

What then would be the consequences of launching a large-scale, or even midsize,
software development and integration project enterprise-wide without knowing if in
fact the end-state architecture will work in production?

Traditionally, once teams are engaged in actual software development and deliv-
ery initiatives, budgets would have been already approved. Allocated funds deplete
exponentially as time goes by. Development teams devour resources at the speed



THE NEED FOR INCREMENTAL SOFTWARE ARCHITECTURE 3

of light, and cost projections are proven false. Consequently, the actual software
construction, deployment, and integration phases often commit organizations to over-
whelming expenditure, with little chance to reverse the course of projects—resulting
in irreparable loss of resources and time.

Business and technological management should not accept an #nproven end-state
architecture, of which no one can predict the pitfalls of ill-designed systems and their
corresponding operating environments. Budgets should not be approved and allocated
to implement theoretical or academic architecture blueprints.

Simply put, do not support speculative architecture.

To prevent such mistakes, a new enterprise design process is therefore required.
One that is proven and reliable. One devised to strengthen the trust between software
design practitioners and business organizations. The term “proven” means that the
end-state architecture should 7ot be a theoretical proposition. It must be a software
design and development model based on tangible and realistic facts, pretested, verified,
and certified. This approach should guide software developers and integrators to deliver
smaller chunks of solid code for one purpose only—uverification of enterprise architecture
assumptions.

Consequently, the software construction phase, as we know it now, would trans-
mute into a concrete form of design proof, circumventing financial calamity that is hard
to recoup.

How can such a method be accomplished?

Focus on Incremental Software Architecture

A new enterprise approach for software product construction, deployment, and
integration should be considered. Chartered to deliver proven and solid architecture,
design practitioners should lead source code construction and delivery initiatives.
They should be accountable for the quality of their design throughout the overall
product creation and distribution life cycle.

Developers, on the other hand, should take the back seat, respond to the design
pace, and follow successions of software architecture progression. Indeed, they
should avoid organically grown environments that are not aligned with an emerging
design strategy. Developers should also seek direction from design teams, rather than
employing shaky technologies that may fail to perform in production.

Incremental architecture, then, should mark a shift in the phases of enterprise
software design, development, and integration.

So What Is Incremental Architecture?

Imagine an end-state architecture diagram that illustrates a production environment,
in which a number of systems depend on each other, integrated to enable business
transactions. In this diagram, as depicted in Figure 1.1, you may also find a number of
architecture components, such as the data access layer, business services layer, reposito-
ries, gateways, adapters, and software proxies. In addition, you may note an enterprise
service bus (ESB)—a mediating middleware product—that enables message exchange
between consumers and services.
Complex? Indeed.



weibeiq 31np3IYDLY 3jeis-pug [edidA] || ainbig

vﬂ i mms“woﬂ_uun T

|
]

£ >
S e

: S J.ﬁG‘A'.‘_

i
il

_ 12Ae7 _ 77,3 -
_ [ mu__ﬂ‘_ A =y ] — SIS | | =
| l@_mg _ ‘ L nf— H,HJ ssaujsng | | _
h_J I _ | |
i AP AL —
— L Il | | |
\‘ e P, N XWI, 4 — —
{ wa —f auisu3 \ (| L @i
\ ) | yaseas _ L ;
R ! AR ——
22 ﬁ 7 S | — * o
| 17 sansag F——)———
¥ em S A




THE NEED FOR INCREMENTAL SOFTWARE ARCHITECTURE 5

Does such an end-state architecture diagram represent a feasible and a proven
performing environment? Can anyone assure that such an illustration depicts an
error-free software implementation deployed to production? Would the source code
meet business requirements? Would performance bottlenecks be nonexistent?

Now, could the end-state architecture blueprint be proven and certified, avoiding
a financial burden caused by systems design flaws? This question reveals the motivation
for verifying the feasibility of a software design and integration throughout all stages
of a product’s development and deployment life cycle.

Then, how can software architects confirm that an end-state architecture is indeed
practical, immaculate, and capable of flawlessly executing business transactions in a
production environment that is already strained?

The Art of Architecture Discovery, Analysis, and Decomposition

To accomplish this mission, a meticulous architecture discovery and analysis should
begin to study the proposed architecture. Systems, applications, and their supporting
middleware and network infrastructure should be ascertained to understand the envi-
ronment (refer to Chapters 4, 5, and 6 to read about the discovery and analysis of
systems, applications, and their supporting production environment).

Next, the end-state software architecture should be sliced into smaller sections,
just like cutting a cake into pieces. Subdividing the end-state architecture into
smaller segments will enable software architects to drill down into the details of
their design. This subdivision process is named architecture decomposition, during
which an end-state architecture blueprint is compartmentalized into distinct areas
of interest.

A physical section of an end-state architecture, for example, may include two appli-
cations and three databases. Another section may consist of a middleware product, such
as an ESB. An additional section may contain a Web server and an application server
and so on.

Architecture decomposition does not necessarily have to be based on physical par-
titions. End-state architecture sections may contain other areas of interest, perhaps
contextual: business functions, lines of business, or even business ownership and/or
sponsorship.

Decomposition could also be applied to a troubled architecture that has already
been deployed to production—an existing implementation that harms the business
and creates a great deal of organizational anxiety. In this case, a production environ-
ment could be sectioned into smaller segments to simplify the verification process. This
effort characteristically helps to isolate underperforming segments of the architecture,
narrow down existing issues, and discover root cause problems.

To learn more about architecture decomposition, refer to Chapters 7-11.

Architecture Verification

Next, in lieu of launching a full-fledged and costly enterprise application construction
and integration effort, a section-by-section architecture verification process should take
place. The process of verifying individual sections of an end-state architecture should
be easier than attempting to implement and deliver an entire enterprise architecture
blueprint. It is apparent now that this mission calls for confirming that each section
would work properly in production.



6 INCREMENTAL SOFTWARE ARCHITECTURE

So how can such an architecture verification process be accomplished and what
does it entail? Led by design teams, small development groups should be commissioned
to construct and deploy only sections of the end-state architecture—not the entire
architecture blueprint. Again, the implementation—development, deployment, and
integration—must tackle sections of the decomposed architecture. Thus, software
construction should be a part of the end-state architecture verification process—
pursuing gradual implementation, adjusting the development and integration progress
to the evolution of the design, rather than leading the product life cycle.

As for that, the traditional software construction phase in its curvent manifestation ceases
to exist. Now, software construction means architecture verification.

Enterprise architects should then be responsible for proving that vital sections
of an end-state architecture meet business and technical requirements. For already
deployed, unstable production environments that require repair, the verification pro-
cess takes place when sections of the architecture are being tested for performance
and capacity.

By now, it is obvious that the architecture verification means a gradual approach to
proving that each part of the architecture would indeed work, or is working properly
in production (if the verification process was performed on an existing failing architec-
ture). Systematic verification will undoubtedly increase the confidence in an enterprise
design. This method shifts the focus from development to design, driven by software
architecture—not software development.

Not everything is rosy, though. Proving that each section in an architecture works
as designed does not mean that the entire end-state architecture and its dependencies
will function as they should, once integrated in production. The rule of thumb
suggests, therefore, that an entire deployed environment must operate properly
as a whole.

An additional verification stage is necessary then to ensure that the proposed
end-state architecture is sound and the integration is solid. Enterprise architects,
developers, and production engineers perform architecture stress testing. This supple-
mental effort would confirm that the architecture is indeed functioning appropriately
under high-volume business transactions.

Finally, as a part of the verification endeavor, an enterprise capacity planning pro-
cess is launched. Perusing this would ensure proper allocation of computing resources
for current and future end-state architecture environment operations.

Chapters 12—15 elaborate on the methods of the ecosystem verification process.

Can Modeling and Simulation Substitute for Incremental
Software Architecture?

Traditional approaches to describe software and its environment have been employed
for years. One method is software modeling, used to depict a system or an application
from different perspectives. Modeling typically illustrates the behavior of software, for
example. Another view may identify the various components of an application. Other
perspectives focus on physical, logical, and process aspects of a system.?

Software modeling is all about expressing a design by using an abstract language,
a descriptive syntax and notation, visually depicting a future software implementation



THE NEED FOR INCREMENTAL SOFTWARE ARCHITECTURE 7

and its corresponding environment. A mere depiction of this architecture would
divulge nothing about its ability to meet business requirements. Nor would such a
diagram tell us anything about system response time and performance. The soft-
ware modeling method, nevertheless, is a far cry from the incremental software
architecture—an approach described in this book devised to verify if an enterprise
architecture will indeed work in production.

Software simulation, however, may shed light upon the capabilities of a system
and its environment to meet performance and stability requirements. The simulation
of a production environment typically takes place in a virtual space, in which a
production landscape is replicated for modeling the behavior of applications, middle-
ware, and network infrastructure. By observing a simulated environment, one may
identify a system’s failures and ill-designed architecture components that miss the
required performance mark. Since software simulation is not pursued in production,
the modeling results are difficult to confirm. Nor can simulated models accurately
forecast the behavior of a system and its related applications, middleware, and network
infrastructure.

With software modeling and/or simulation, no one can accurately predict the
solidity and readability of an end-state architecture. No one can ensure a system’s sta-
bility. No one can pinpoint troubled sections of architecture. And no one can gnarantee
that a design meets non-functional requirements.

Platform for Change

There is nothing more frustrating to employees than lack of an enterprise platform
for change. A platform for change is a powerful stage for those whose mission calls for
organizational changes. A platform for change could be an open forum, perhaps gather-
ings or informal meetings, during which new ideas are voiced to promote technological
endeavors or business objectives. A platform for change could also be a laboratory ded-
icated to technical experiments, during which open-source libraries and components
are downloaded from the Internet for evaluation and proof of concepts.

Undoubtedly, there are myriad platforms that enable employees to foster a fresh
enterprise direction or vision. The alterations to the way we do business could take
many forms. Enterprise cultural changes, for instance, are arduous and slow to fulfill.
Cultural aspects pertain to an alteration of a company’s core values, communication
practices,” and even staff attitudes. In contrast, adoption of technological implemen-
tations tends to be fast and vigorous. Technological developments occur constantly,
influencing the way we run our production environments.

Microservices: A Product of Change

Changes imposed by upper management are named top-down initiatives. Executives
typically perform reorganizations and issue best practices and policies to drive the
direction of the business. These types of changes are slow, and as time passes, they
may not be relevant any longer.

Similarly, enterprise architecture standards are not always issued in a timely man-
ner. Governance departments whose charter is to draft best practices are not always



8 INCREMENTAL SOFTWARE ARCHITECTURE

synchronized with the various projects that typically take place simultaneously in the
organization. On the other side of the aisle, software developers and integrators, com-
missioned to deliver source code on time and on budget, cannot afford to wait until
enterprise decisions and standards are published.

Not many choices are left. In these cases, the change of architecture direction
is propelled from the bottom. Specifically, with the absence of an established orga-
nizational platform for change, small development teams tend to ignore enterprise
architecture best practices. Often named the bottom-up evolution, this movement uses
open-source products and mixed and unstandardized technologies to build applications
or smaller-scale services.

The outcome of such drive is indeed powerful—at the same time, though,
unconventional. The upshot is refreshing since the chief attention is given to product
development—not necessarily projects. The formation of such decentralized and
self-governed teams allows the management of decentralized databases and the
development of organically grown applications. The design method employed here
is named microservices.’ The products they deliver are independent, loosely coupled,
and focus on smaller-scale problems. The overall emphasis is not on enterprise
asset reuse. Here, reusability is applied to components that drive the construction of
services—not on enterprise expenditure reduction or asset consolidation.

But even with the focus on small-scale and agile implementations, disregarding
organizational standards and enterprise architecture direction, the contribution of the
microservices architecture is vast. Turning away from the traditional 7onolithic system
architecture is a leap forward in the right direction. This includes breaking off from
tightly coupled implementation practices, rejecting a centralized governance approach
for software development, and avoiding huge investments in large projects.

Incremental Software Architecture and Microservices Architecture

The incremental software architecture approach is a continuous section-based design,
discovery and analysis, decomposition, and verification process. Akin to the microser-
vices architecture, the risk of engaging in perilous and large-scale implementations or
producing monolithic application formations is utterly reduced.

As explained in the previous sections, the driving motivation of the incremental
software architecture is to conform to an enterprise software design—a high-level
view that software developers not always are able to observe. Slicing an architecture
blueprint into smaller segments and implementing them minimizes risks to the
business as well.

As per the incremental software architecture approach, the gradual verification and
certification of an enterprise end-state architecture enforces regional best practices and
policies upon smaller development teams. Avoiding employment of unstandardized
technologies and, at the same time, decentralizing the software development efforts
are other benefits that are hard to ignore.

It is possible to envision, though, that the microservices architecture would be the
design verification arm of the incremental software architecture approach. In other
words, small development teams would focus only on constructing segments of the
end-state architecture, an incremental approach leading to the overall certification of



THE NEED FOR INCREMENTAL SOFTWARE ARCHITECTURE 9

the overall enterprise design. This would be a combined effort to deliver high-quality
software to production environments.

Incremental Software Architecture Process

This book elaborates on the incremental software architecture process and its chief
tasks to accomplish in Parts 2, 3, and 4. Part 1 is a guide provided to characterize levels
of system failures and assist business and I'T professionals to identify and classify the
causes of underperforming implementations.

There is nothing intricate about this method of design, implementation, and
integration of organizational enterprise assets. There is nothing to fret about, because
the approach calls for only three stages, through which an enterprise end-state
architecture is discovered and analyzed, decomposed, and certified, as depicted in

Figure 1.2:

1. End-state architecture discovery and analysis. This stage represents the methods

employed to ascertain systems and their related applications in an end-state

architecture proposition or in a production environment (Part 2).

End-state  architecture decomposition. Structural, behavioral, and volatile

attributes of end-state architecture drive the decomposition process,

rendering two distinct perspectives: business and technology (Part 3).

3. End-state architecture verification. Proven end-state architecture is one that
is certified by three authentication tasks: design substantiation, end-state
architecture stress testing, and enterprise capacity planning (Part 4).

()

Finally, What Is a System?

It would be odd for a book about architecture not to have a definition for the term
“system.” Unfortunately, as nice as it would be, there is no common industry definition
for such an entity. This term means many things to a myriad of organizations. It is so
subjective that the various interpretations introduce only confusion to the business and
I'T communities.

| !
Er.»d-State Arch»tec(ur.e End-State Architecture ! End-State Architecture
Discovery and Analysis Decomposition ! Verification

Figure 1.2 Incremental Software Architecture Process



10 INCREMENTAL SOFTWARE ARCHITECTURE

So what is a system? In this book, a system is analogous to an operating technolog-
ical environment. Moreover, a system is the largest entity in production. It encompasses
enterprise assets such as applications, components, middleware products, and network
infrastructure. When we say “system,” we mean an autonomous run-time environment
that offers business and technological solutions.

Furthermore, a production environment is typically made up of multiple systems.
An end-state architecture, on the other hand, may contain one or multiple systems.

Notes

1. Regional management and technical groups are geographically disbursed business domains, known as
lines of business, that specialize in providing services to communities of consumers: Patrick Heinecke,
Success Factors of Regional Strategies for Multinational Corporations: Appropriate Degrees of Management Auton-
omy and Product Adaptation, 2011, Springer Science & Business Media, p. 5.
. Eric Flamholtz, Yvonne Randle, Corporate Culture: The Ultimate Strategic Asset, 2011, Stanford University
Press, p. 8.
3. The various perspectives of system modeling are elaborated on in Philippe Kruchten’s 4+1 well-known
rescarch paper, published in 1995.

+. Edgar H. Schein, Organizational Culture and Leadership, 2010, John Wiley & Sons, p. 7.

5. Lucas Krause, Microservices: Patterns and Applications: Designing Fine-Grained Services by Applying Patterns,
2015, Lucas Krause, p. 44.

ra



