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Preface

It seems to be an opportune moment to produce a book on viscoplastic fluid
mechanics. There is a vast amount of material covering the theoretical aspects of the
subject, as well as numerical modelling. When 1 began this monograph, 1 was very
surprised to find the treasure that was lying in front of me and this is an account
of the voyage of discovery.

The first chapter lays out the essential features of viscoplasticity through a
detailed study of the flow of a Bingham fluid in a channel. The influence of the yield
stress on the critical pressure drop to sustain the flow, the velocity field, the flow
rate and the inherent nonlinearity of the constitutive model are explored in-depth.
Non-dimensionalisation, and its use in defining the Bingham number and deriving
the Buckingham equation is demonstrated, and the solution to the latter is found.
The next section deals with the nature of free boundary problems. such as the Stefan
problem. The location of the yield surface in the channel flow of the Bingham fluid
is also a free boundary problem, and the corresponding velocity field can be
obtained through the minimum of a suitably chosen functional or the solution of its
equivalent variational inequality. The chapter closes with a brief review of the
experiments which challenge and support the assumption that viscoplastic fluids
exist, and a summary of the aim of the rest of the book.

The next two chapters are concerned with the basic kinematics of the flows of
fluids and the balance equations of continuum mechanics so that this monograph is
self-contained. Chapter 4 examines in-depth the role of pressure in incompressible
media and the formulation of constitutive equations to respond to the incom-
pressibility of a material, treating it as a constraint on a given motion. The extension
to incompressible viscoplastic fluids is made and the consequence of treating the
yield stress effect as a response to a second constraint is explored. leading to the
concept of the viscoplasticity constraint tensor. Next, the constitutive equations for
compressible viscoplastic fluids are derived. Finally, the correspondence between
one-dimensional Bingham, Herschel-Bulkley and Casson models and their three-
dimensional versions is exhibited.

vii
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Chapter 5 is concerned mostly with the steady shearing flows of Bingham fluids
with a brief mention of modelling the effects of heat transfer. Chapter 6 deals with
the unsteady shearing flow in a channel. The lateral movement of the yield surface
in the initiation of this flow is described. and the broad question regarding the
kinematics and dynamics of this lateral motion is answered through an application
of Hadamard’s theory of propagating singular surfaces.

Chapter 7 is a sample of analytical approximation techniques to understand the
flows of viscoplastic fluids. The lubrication paradox and its resolution through an
examination of the flow of a Bingham fluid in a wavy channel are discussed. Next,
the equations governing the axisymmetric and asymmetric Hele-Shaw flows of
viscous and viscoplastic fluids are derived. Finally, a summary of the results
obtained in the study of the linearised stability of the channel and helical flows of a
Bingham fluid is given.

In Chap. 8, variational principles and variational inequalities associated to the
flows of incompressible viscoplastic fluids are derived through the principle of
virtual power. A summary of the results from convex analysis needed to understand
this material is included and the equivalences, when they exist, between the
minimiser of a functional, the solution of the corresponding variational inequality
and that of the equations of motion are explored. Simplifications of the variational
inequality occur in several flows and these are listed. Finally. a basic inequality is
derived to model the flows of compressible viscoplastic fluids. In Chap. 9, the
variational principle is applied to obtain the minimum pressure drop per unit length
to sustain the steady flow of a Bingham fluid in a pipe of arbitrary cross-section.
Next, the roles of the variational principle and the associated variational inequality
are examined to understand when bubbles remain static in viscoplastic fluids, and
when rigid bodies move in such materials. Proofs are also provided to show that
steady shearing flows in a Bingham fluid come to rest in a finite time when the
driving mechanism falls below a critical value, emphasising the role of variational
inequalities. Finally, the energy principles are employed in the nonlinear stability
analysis of the flow of a Bingham fluid in a channel and a pipe of circular cross-
section.

The final chapter is concerned with numerical modelling through the applica-
tions of the augmented Lagrangian and the operator-splitting methods. Since the
solution of the minimisation problems in finite dimensions through the augmented
Lagrangian method leads naturally to its extension to the low problems in Bingham
fluids, this method is described in detail in the first two sections. Next, the operator-
splitting method is introduced and employed to study the thermally driven cavity
flow of a Bingham fluid. The chapter closes with a section on numerical modelling
of flows of compressible viscoplastic fluids with a study of the lid-driven cavity
flow of a weakly compressible viscoplastic fluid. Some comments on the use of
regularised models in numerical modelling are also offered.

And, the last word. Viscoplastic fluid mechanics means yield stress and the
location(s) of yield surface(s). That is, free boundary problems, variational
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principles, variational inequalities and convex analysis with augmented Lagrangian
and operator-splitting methods following from them. In writing this book, apart
from including solutions to problems obtained through traditional approaches to
fluid mechanics, my aim has been to emphasise the pre-eminence of the modern
approach to this subject.

Adelaide, December 2014 Raja R. Huilgol
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Chapter 1
The Basic Features of Viscoplasticity

1.1 Bingham Fluid at Rest in a Channel

Consider an incompressible Bingham fluid at rest between two parallel walls. Assume
that the domain £2 of the fluid can be described through a region symmetrical about
the x-axis as follows:

2={(x,y):—0 <x <00, —H<y<H]. (1.1.1)

See Fig. 1.1. Let a constant pressure gradient be applied to the fluid in the x-direction
so that we can describe the pressure field in the fluid through p(x, v) = —Gx+f(v).
where G > () is the constant pressure drop per unit length and f(v) is a function of y.
which is irrelevant here. Ignoring any body force, the equations of equilibrium lead to

ap ()
. (1.1.2)
ox ay

where @ is the shear stress in the fluid. This equation can be integrated for the shear

stress and one obtains
o=—Gy+b. (1.1.3)

where b is the constant of integration. Since the domain is symmetrical about the
x-axis, one can assume that b = 0. Thus, 0 = —Gy.

The ability of a Bingham fluid to remain at rest under a constant pressure drop
per unit length G. albeit for a limited range, requires further investigation, especially
since the shear stress distribution in the channel is given by o = —Gy for both purely
viscous and viscoplastic fluids. The former class of fluids will flow regardless of how
small G is, whereas the latter will not move unless the pressure drop per unit length
G exceeds a critical value G.. which depends on the yield stress of the fluid. To
determine G,.. an explanation regarding the change in sign of the shear stress across
the channel is given, paving the way for a formula relating G, to the yield stress 7,
of the fluid. ’

© Springer-Verlag Berlin Heidelberg 2015
R.R. Huilgol. Fluid Mechanics of Viscoplasticity, DOL 10.1007/978-3-662-45617-0_1
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Z

n=j

l
n=—j

Fig. 1.1 Shear stress distribution across a channel due to a constant applied pressure gradient, with
external shear stress vectors and external unil normals

1.2 Sign of the Shear Stress

One can see that the shear stress is negative above the x-axis and is positive below
it. This needs some explanation. First of all, as the pressure drop tries to move the
fluid in the positive x-direction, the shear stresses on the two walls oppose it. See
Fig. 1.1. While a more detailed description of Cauchy’s stress principle is provided
in Chap. 3, at present it is sufficient to assume that the stress tensor T in the fluid is
symmetric and two-dimensional, given in matrix form through:

T T
T:[T;: T;;] Ty =T1>. (1.2.1)

On the plane y = H, the external unit normal n = j is oriented towards the positive
y-direction. Cauchy’s stress principle says that the external stress vector t on this
plane is given by t = Tn. So,

ATy T2 | [0 | Tia| _ |[—ow B
o [Tzl To ||| [T | T |’ (1.2.2)
where ¢, is the magnitude of the shear stress at the wall. Since this external stress

points in the negative x-direction, the shear stress 72 < 0 in the fluid. This negative
value persists till it changes from a negative to a positive value, as one moves from

the plane vy = H to the plane y = —H. Now, why is the shear stress on the plane
y = —H positive? This is because on this plane, the external unit normal is given by
n = —j. So, the external stress vector is given by

_(TuTefl 0 _|=T|_[-ow
t_[TZI Tz:} [—1]_[@2]—[52 ¢ (1.2.3)



1.2

Sign of the Shear Stress

Obviously, the shear stress 77> > 0 here.
Once again, note that the sign of the shear stress is independent of the constitutive

equation and applies to all continuous media.

1.3 Critical Pressure Drop and the Constitutive Relation

Now, let the pressure drop G be increased slowly. The shear stress will grow in
magnitude till the magnitude of the wall shear stress, o,.. equals the yield stress, 7.
of the fluid. That is o, = 7. Consider the axial force acting on the fluid over a cube
of height 2H in the y-direction. unit width in the z-direction and unit length in the
x-direction. This force is given by 2GH. Opposing it are the forces on the boundaries
of the channel at the top and bottom. Per unit length in the x-direction and unit width
in the z-direction, these forces are given by 27,. Thus, the flow is incipient when the
critical pressure drop per unit length is given by
G = 131

e =2 (1.3.1)
Note that the fluid does not flow till this critical value has been exceeded. If the
pressure drop per unit length G is increased beyond G,.. the fluid will flow with the
yielding occurring at the wall at first. Assuming that the transient effects have died
away and that the flow is steady, there will be a boundary layer of the Bingham fluid
moving as a liquid, while away from the wall, the Bingham material will flow as a
solid plug: these phenomena require some explanation.

The yield stress and the adherence condition at the wall together prevent the
Bingham fluid from undergoing a deformation, i.e., shearing, till the magnitude of the
shear stress at the wall, due to the applied pressure gradient, exceeds the yield stress.
Elsewhere in the flow domain, the yield stress prevents the fluid from undergoing a
deformation, i.e., shearing, where the magnitude of the shear stress is less than or
equal to the yield stress. From Figs. 1.1 and 1.2, one sees that this situation arises
in a symmetrical region around the centre of the channel. Since there is no fixed
boundary at the centre, the only way the fluid can undergo zero deformation is to
move as a solid plug.

To understand these matters in detail, let the flow occur in the x-direction with a
velocity field given by v = u(y). Since a plug flow exists around the x-axis, we see that

u(y) =u(0), 0<y<h, (1.3.2)

where £ is the semi-width of the plug. Note that in the rigid core, du/dy = 0. In
h <y < H. the fluid moves like a viscous liquid. Obviously, one does not know the
exact nature of the velocity distribution in this boundary layer. Clearly, one needs a
constitutive equation (o proceed.

The commonly used constitutive assumption is that the magnitude of the shear
stress in the plug is less than or equal to the yield stress 7,. while in the yielded



4 | The Basic Features of Viscoplasticity

Fig. 1.2 Steady flow in a channel due to a constant applied pressure drop per unit length, with a
moving rigid core and yielded zones next to the walls

domain, the magnitude of the shear stress exceeds the yield stress, augmented by a
shear rate dependent stress. So, we have

dufdy =0, |o| <1y, (1.3.3)

And,

du T, du

=— gy (1.3.4)
v dy v |dut/dv| dy

oF =

where 7 is the viscosity of the fluid. Since the velocity in the fluid increases from
zero at the boundary to the plug velocity at v = h, it is clear that diu/dy < 0 in the
yielded region, i < y < H. So, we can wrile the constilutive equation as

-1, <0=<0. 0<y=<h, (1.3.5)
du

—T\-+I]{—:(T. h<y<H. (1.3.6)
‘ dy

Keeping in mind that the pressure drop per unit length G > G, > 0 is a constant,

one is laced with the following questions:

. How wide is the plug, or how can one find /?

What is the constant speed «(0) of the plug?

What is the velocity distribution « = u(y)inh <y < H?

. What are the boundary conditions on « = «(y) at the interface between the plug
flow and the boundary layer?

S e

=

The answers to these questions can be found easily in the problem at hand as can
be seen next.



