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1
Introduction

Yang Gao, Elie Allouis, Peter lles, Gerhard Paar, and José de Gea Ferndndez

Planetary robotics is an emerging multidisciplinary field that builds on knowledge
of astronautics, terrestrial robotics, computer science, and engineering. This
book offers a comprehensive introduction to major research and development
efforts for planetary robotics, with a particular focus on autonomous space
systems, which will enable cost-effective, high-performing, planetary missions.
Topics covered in this book include techniques and technologies enabling
planetary robotic vision processing, surface navigation, manipulation, mission
operations, and autonomy. Each topic or technological area is explained in a
dedicated chapter using a typical space system design approach whereby design
considerations and requirements are first discussed and followed by descriptions
of relevant techniques and principles. Most chapters contain design examples
or use cases that help demonstrate how techniques or theoretical principles
can be implemented in real missions. Since any space engineering design or
development is a system engineering process, this book also dedicates one
chapter to planetary robotic system design — from mission concepts to baseline
designs. As a result, this book can be used as a text or reference book for relevant
engineering or science courses at the undergraduate and postgraduate level, or a
handbook for industrial professionals in the space sector.

This chapter introduces the book by offering a chronicle on how planetary ex-
ploration and robotics have evolved to date, a systematic overview of planetary
robotics, as well as an explanation on the organization and scope of the book.

1.1
Evolution of Extraterrestrial Exploration and Robotics

The need for humans to explore beyond the realm of Earth is driven by our inher-
ent curiosity. Throughout our history, new worlds have been discovered by daring
explorers who set out to discover new lands, find riches, or better understand
these little-known territories. These journeys were fueled by the technological
advances of the times such as the compass, maritime maps, or plane, and in re-
turn contributed tremendously to the scientific knowledge of humankind. For all

Contemporary Planetary Robotics: An Approach Toward Autonomaous Systems, First Edition.
Edited by Yang Gao.
@ 2016 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2016 by Wiley-VCH Verlag GmbH & Co. KGaA.
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the good provided by these exploratory endeavors, history also reveals that explo-
ration is difficult, perilous, and can be fraught with unforeseeable consequences.
For examples, within early maritime exploration, only a fraction of all the ships
that aimed for the new worlds eventually achieved their goals. There have also
been countless instances where the discovery of the new lands was detrimental to
the indigenous populations. The past and lessons learned serve as a stark reminder
to all new exploration endeavors.

Outer space has provided real, new exploration frontiers for mankind since the
1950s. With the capability and the irresistible attraction to go beyond our planet
Earth, minimizing the impact of mankind on other extraterrestrial bodies (be it a
planet, a moon, a comet, or an asteroid) is paramount. Strong with the hindsight
and knowledge provided by humans’ own history, we are continuously learning
about these new space frontiers and taking precautions to avoid repeating mis-
takes learned from the past exploration activities.

The onset of space exploration in the late 1950s to early 1960s focused on send-
ing humans into space and the Moon, a key priority for the two main adversaries
of the Cold War. However, it was true then as it is now, in parallel to the expensive
development of manned space programs, the use of cheaper robotic proxies was
deemed important for understanding the space environment where the astronauts
will be operating. The USSR had the first set of robotics missions, successfully
launching a series of Luna probes starting from 1959. Within a year, the Luna 1
managed a flyby of the Moon, Luna 2 crash landed on the Moon, and Luna 3 took
pictures of the Moon'’s far side. It took another 7 years before both the USSR and
the United States, within a few months from each other, performed soft landing
on the Moon with their respective probes, Luna 9 and Surveyor 1. These missions
paved the way for the first human landing on the Moon in 1969 by the United
States. Building on these earlier successes, robotic exploration missions have ex-
tended their reach to Mercury, Venus, Mars (known as the inner solar system), and
subsequently the outer solar system where tantalizing glimpses of the volcanic lo,
the frozen Europa, or the methane rains of Titan have been obtained.

Planetary missions can use various ways to explore an extraterrestrial body, of-
ten starting with reconnaissance or remote sensing using orbiting satellites. More
advanced approaches (such as landing, surface operation, and sample return) en-
abled by sophisticated robotic systems represent a giant leap in terms of mission
complexity and risk, but more importantly scientific return. Not surprisingly, ad-
vanced extraterrestrial exploration is littered with unsuccessful missions bearing
witness to serious technical challenges of such endeavors. Table 1.1 presents statis-
tics of successful surface missions aimed for the solar system (excluding manned
missions). The relatively low success rate is a clear reflection on the technical
difficulties involved in designing, building, and operating the required robotic
spacecraft. It is worth noting that space engineers and scientists have created the
landscape of what we know today. With sheer determination, they continue to
address countless challenges, failing often, but regrouping until they succeed.

Within the existing successful unmanned missions, various types of robotic
systems have played significant roles, including robotic platforms (such as the



