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mm-Wave Silicon Power Amplifiers and Transmitters

Build high-performance, spectrally clean, energy-efficient mm-wave power ampli-
fiers and transmitters with this cutting-edge guide to designing, modeling, analyzing,
implementing, and testing new mm-wave systems.

Suitable for students, researchers, and practicing engineers, this self-contained guide
provides in-depth coverage of state-of-the-art semiconductor devices and technologies;
linear and nonlinear power amplifier technologies; efficient power combining systems,
circuit concepts, system architectures, packaging, and system-on-a-chip realizations.

The world’s foremost experts from industry and academia cover all aspects of the
design process, from device technologies to system architectures. Accompanied by
numerous case studies highlighting practical design techniques, trade-offs, and pitfalls,
this is a superb resource for those working with high-frequency systems.

Hossein Hashemi is a Professor of Electrical Engineering, Ming Hseih Faculty Fel-
low, and the co-director of the Ming Hsieh Institute and Ultimate Radio Laboratory,
University of Southern California.

Sanjay Raman is a Professor of Electrical and Computer Engineering at Virginia Tech,
and a former Program Manager in the Microsystems Technology Office, DARPA. He is
a Fellow of the IEEE.
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Preface

Silicon has become the uncontested technology of choice for commercial radio-
frequency integrated systems such as those in smartphones, tablets, and televisions.
Research over the past decade has demonstrated the feasibility of realizing complex
silicon integrated systems at millimeter frequencies. There is little doubt that oper-
ation at millimeter waves not only offers advantages, but also is necessary in many
commercial and noncommercial applications. Millimeter-wave integrated circuits for
automotive radars and high-speed wireless connectivity are already in the market.
The fifth-generation wireless standards will include millimeter-wave operation as an
essential component to increase the overall capacity. The volume of millimeter-wave
integrated systems may soon exceed billions of units per year.

Millimeter-wave operation has a long history. Sir Jagadish Chandra Bose demon-
strated transmission and reception of 60 GHz electromagnetic waves over a distance
of 23m in 1895. The application of solid-state devices in the millimeter-wave range
started in the second half of the twentieth century. In the 1970s, solid-state transceivers
at 60 GHz were demonstrated primarily by using diodes for signal generation, frequency
conversion, and amplification. Monolithic millimeter-wave receivers and transmitters
were reported in the 1980s using III-V transistors capable of providing power gain
well into the millimeter-wave region. Applicability of silicon technologies, including
CMOS, for radio-frequency applications was established in the 1990s. Complex sili-
con integrated systems at millimeter waves were reported in the 2000s, and commercial
products started entering the market shortly after.

Throughout history, technology has always been a limiting factor in the amount of
radio-frequency signal power that can be generated. In the absence of devices that
can provide power gain, generating electromagnetic signals will be power inefficient.
Early demonstrations of electromagnetic signal generation at higher frequencies typi-
cally involve nonlinear processes such as harmonic signal generation. These approaches
are gradually replaced with more linear amplification approaches once supporting
technologies become available. In other words, efficient high-power electromagnetic
signal generation and amplification oftentimes lags the demonstration and even deploy-
ment of wireless systems operating at those frequencies. It is hence natural to see that
efficient high-power generation of millimeter-wave signals using silicon technologies
is an ongoing research topic nearly a decade after the early demonstrations of complex
silicon millimeter-wave integrated systems.

Not too long ago, silicon was considered to be incapable of serving as a proper
technology for the realization of power amplifiers even at radio frequencies. In fact,
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the viability of CMOS in certain commercial RF wireless systems is still a debated
topic. In 2009, the US Defense Advanced Research Projects Agency (DARPA) pos-
tulated that watt-level transmitter output power can be achieved in silicon technologies
with efficiencies significantly beyond the state-of-the-art and these transmitters could be
linearized on-chip to support high-order digitally modulated waveforms. This led to the
launching of the Efficient Linearized All-Silicon Transmitters ICs (ELASTX) program,
of which we were both key players (Sanjay as founding program manager, Hossein as
leader of one of the key performer teams). In June 2012, we organized a workshop
at the IEEE Radio Frequency Integrated Circuits (RFIC) Symposium with an ambi-
tious title of “Towards Watt-Level mm-Wave Efficient Silicon Power Amplifiers.” The
workshop included talks by prominent individuals from academia and industry, includ-
ing several ELASTx team members, covering challenges and research efforts around
this topic. The enthusiasm from speakers and participants was accompanied by realistic
skepticism about the viability of such an outrageous proposition in the near future. It
is extremely gratifying to witness watt-level silicon power amplifiers and transmitters
generating millimeter-wave signals efficiently from various research groups across the
world a few short years after the workshop.

The seeds of this book were planted at the same IEEE RFIC Workshop. Cambridge
University Press, led by Dr Julie Lancashire, concurred with our vision that a book on
the topic of silicon millimeter-wave transmitters and power amplifiers is timely. We did
not want the book to be a mere collection of research results that have appeared as papers
over the past few years. The intent was to draft a book that includes technology, chal-
lenges, theory, and a systematic approach towards realization of silicon millimeter-wave
power amplifiers and transmitters with research results offered as proof-of-concept case
studies. Most chapters of the book are written in an advanced textbook style suitable for
graduate students and practicing engineers. Many graphs and tables include comprehen-
sive data about the relevant technologies, devices, and circuits, and serve as complete
up-to-date references for researchers and developers. Maintaining consistency and flow
across various chapters is a challenge in a multi-authored book. The authors have been
very cooperative in drafting and revising their chapters in this spirit. It has been a plea-
sure to work with the world’s top individuals in the area of silicon millimeter-wave
integrated circuits for this project. We hope that all readers learn from reading this book
as much as we did.

Editing a multi-authored book, especially when the authors are all prominent busy
individuals, is not an easy task. It requires great patience and support. We have been
lucky to work with the wonderful team at the Cambridge University Press on this project.
Dr Julie Lancashire was nothing but graciously supportive and understanding over the
past two years. Elizabeth Horne and Heather Brolly provided wonderful assistance.
Thank you all!
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1.1

Introduction

Hossein Hashemi and Sanjay Raman

Advancements in semiconductor technology have led to a steady increase in the unity
power gain frequency (fmay) of silicon transistors, both in CMOS and SiGe BiC-
MOS technologies. This, in turn, enables realization of complex monolithic silicon
integrated circuits operating at the millimeter-wave (mm-wave) frequency range (typ-
ically defined as 30~300 GHz). Prime target applications of silicon mm-wave integrated
systems include high-speed wireless access, satellite communications, high-resolution
automotive radars, and imagers for security, industrial control, healthcare, and other
applications. However, scaling of silicon transistors for high f;4, comes at the expense of
reduced breakdown voltages, and hence limitations on output voltage swing and power.
The link range and energy consumption of wireless systems are direct functions of the
transmitter output power and efficiency, respectively. Efficient generation and ampli-
fication of radio-frequency (RF) modulated waveforms using silicon transistors is an
ongoing challenge due to the reduced breakdown voltage of scaled silicon transistors,
loss of passive components, and the conventional linearity—efficiency trade-off. This
book covers the fundamentals, technology options, circuit architectures, and practical
demonstrations of mm-wave wireless transmitters realized in silicon technologies.

Why mm-waves?

The main motivation to operate the wireless systems at higher carrier frequencies is the
larger available bandwidth which translates to higher data rate in communication sys-
tems and higher resolution in ranging and imaging systems. Furthermore, the size of the
antenna and circuitry, typically proportional to the wavelength, reduces with increas-
ing carrier frequency. On the other hand, operating at higher frequencies poses two
fundamental challenges. First, the loss of most materials increases with the frequency;
therefore, compared with radio and microwave frequencies (below 30 GHz) the elec-
tromagnetic wave at mm-wave frequencies is attenuated more as it propagates in an
environment (Fig. 1.1). It should be noted that over the mm-wave spectrum there are
“windows” of relatively lower attenuation around 35 GHz, 90 GHz, 140 GHz, etc.,
and, consequently, these bands are often selected for mm-wave applications; on the
other hand, high atmospheric attenuation levels around frequencies such as 60 GHz
enable more aggressive frequency reuse, and are therefore often selected for small
cell or secure communications applications. Second, the performance of semiconductor
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devices worsens with frequency; this includes reduced gain, increased noise, and more
nonlinearity at higher frequencies for a given technology.

Historically, mm-wave systems have been confined to defense, aerospace, and niche
commercial applications due to the high cost of multi-chip-module (MCM) approaches
and the need to use compound semiconductor processes to achieve required perfor-
mance. However, over the past decade, there has been an explosion of research and
development towards system-on-a-chip (SOC) realizations of complex wireless sys-
tems operating at mm-waves for high-volume commercial applications. Commercial
complex mm-wave SOCs, such as 60 GHz phased array transceivers for high-speed
wireless access, exist today [1-3]. Even certain defense applications, such as large-scale
mm-wave phased arrays for helicopter operations, promise to be benefited by silicon
implementations [4]. The main commercial applications being pursued at mm-waves
include high-speed wireless connectivity with primary focus in the 60 GHz industrial,
scientific, and medical (ISM) frequency band; high-resolution automotive radars with
primary focus at the 77 GHz frequency band; mm-wave backhaul in the Ka and E
bands; and active and passive RF imagers with primary focus at frequencies above
100 GHz. The fifth-generation commercial wireless standard (5G), targeting systems
beyond 2020, is expected to include mm-wave operation for high-data-rate wireless
access between small cells and mobile devices. High-resolution radar continues to be
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IEEE Frequency Frequency

Bands [GHz] [GHz] Applications Applicable Standards
Mobile communications for 5G Cellular networks ”
28,38 (emerging) None yet available
27.5.30 SATCOM uplinks (e.g.. Inmarsat Global Xpress: MIL-STD-188-164. ITU-R S.524-9, FCC 25.138, 1
Ka (27-40) 27.5-30) and downlinks (e.g.. Iridium: 29.1-29.3) ETSI EN 303 978 |
24.25-30 L-3 ProVision imaging scanners at airports IEEE C95.1 |
35 Munitions and missiles seekers and sensors Unknown
43.5-45.5 U.S. AEHF military SATCOM system uplinks” MIL-STD-3015
V (40-75) 57-86 “Lastinch”, short range wireless communications IEEE 802 11ad. |EEE 802 11aj, IEEE 802 15¢
| X
n “Last mile”, point-to-point backhaul wireless |
‘ 71-75 commanications ETSI TS 102 524 ‘
[ . 2o
75-76, 81- Last mile”, point-to-point backhaul wireless {
[ 86.92-95 | communications ETSITS 102524 :
76-77 :::grr;%r:il\?:sracdr::se control (ACC) “long range’ ETSI EN 301 091 parts 1& 2 ’
W (75-110)
77-81 Short range “stop & go" automotive radar ETSI TR 102 263 J
94 Missile seekers. collision avoidance radars Unknown [
85-110 Imaging for medicine biology. and security IEEE C95.1 |
110-120 Imaging for medicine. biology. and security IEEE C95.1 |
]
Long range wireless communications. atmospheric
G (110-300) 220-240 research radar None yet available }
120. 183. Sh irel _— ; .
325 ort range wireless communications (emerging) None yet available

~ U.S. AEHF system downlink frequencies are located at 20.2 GHz - 21.2 GHz (IEEE K band).

Summary of major mm-wave applications and applicable standards.

the primary application for mm-wave military systems. Figure 1.2 summarizes major
mm-wave applications and their applicable standards.

Why silicon?

The advancement of silicon technologies, CMOS in particular, is motivated by perfor-
mance gains of digital computation and signal-processing integrated circuits. Specifi-
cally, the computation speed and power consumption of digital circuits improve with
technology scaling. The large investment required for advancing the silicon manu-
facturing technologies has been justified by the large demand due to the economy
of scale. Thanks to groundbreaking research since the 1990s, today most of the RF
functions of a wireless system are also realized in the same digital CMOS pro-
cess leading to SOC realizations. Compared with the traditional multi-chip-module
(MCM) approaches, SOCs reduce the cost, complexity, and power consumption,
while enhancing robustness thanks to on-chip calibration, built-in self-test (BIST),
and self-healing schemes. Furthermore, availability of “free” digital functions has
enabled new system architectures with improved performance over conventional
schemes.

The widespread usage of silicon technologies for complex mm-wave integrated sys-
tems is a result of large-scale research and development over the past two decades.
Silicon technologies capable of operating at mm-waves were available in the 1990s
[5, 6], followed by monolithic mm-wave circuit realizations shortly after [7]. Early
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efforts towards realization of complex mm-wave integrated circuits in standard silicon
technologies were led by Caltech [8-11], IBM T. J. Watson Research Center [12, 13],
UC Berkeley [14, 15], UCLA [16, 17], and the University of Toronto [18, 19] among
others around the mid 2000s. Later, in addition to the aforementioned groups, several
more research groups such as Georgia Tech [20], UCSD [21-24], National Taiwan Uni-
versity [25, 26], Intel [27], and Tokyo Institute of Technology [28] among others made
significant contributions in the research and development of mm-wave silicon complex
integrated systems.

While technology scaling provides transistors with higher transistor unity power-gain
frequency, it also reduces the breakdown voltage and hence the maximum allowable
voltage swing. In fact, there is an inverse relationship between maximum speed and
breakdown voltage for a given semiconductor material. The lower allowable voltage
swing degrades the signal-to-noise ratio (SNR) and linearity of many circuit building
blocks, and also challenges efficient generation of high-power signals. Silicon technol-
ogy does not lead to higher-performance circuit building blocks with a fixed topology
when compared with a compound semiconductor realization. The main advantage of
using a silicon technology for high-performance mm-wave systems, in addition to lower
cost and footprint, is the higher performance of the entire system enabled by new
integrated architectures that leverage combination of analog, mixed-signal, and digital
designs.

Chapters 2 and 3 discuss the current state of the art in SiGe and CMOS technologies,
respectively, for mm-wave transmitter applications.

Efficient, watt-level radio-frequency (typically <6 GHz) power amplifiers and trans-
mitters now exist commercially. The choice of using silicon versus compound semi-
conductor technologies in an RF power amplifier depends on the specific application,
market demand, and related economics. It is quite conceivable that the growth of wire-
less devices and connectivity at radio frequencies thanks to CMOS realizations will be
repeated at mm-wave frequencies for a complementary set of applications.

Wireless communication basics

The general form of a modulated waveform, which can be the electric or magnetic field
of a propagating electromagnetic wave, can be expressed in the so-called polar form as

Xpolar(t) = a(t) cos(wct + ¢(t)), (1.1)

where w is the carrier frequency, and a(r) and ¢(7) are the amplitude modulation (AM)
and phase modulation (PM) portions of the waveform and contain the information. This
expression can also be written in another form, commonly referred to as the Cartesian
form, as

XCartesian(t) = I(t) cos(wct) + Q(t) sin(wr), (1.2)

where I(¢) and Q(¢) contain the information and are referred to as the in-phase and
quadrature-phase components, respectively. While the aforementioned two forms are



