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C continued

CHLORINE

The manufacture of chlorine is discussed under Alkali and chlorine industries,
Vol. 1, pp. 668-707. Binary chlorides are usually discussed in the article dealing with
compounds of the other element; thus, for aluminum chloride see Aluminum com-
pounds; for hydrogen chloride see Hydrochloric acid. See also Chlorine oxygen
acids; Chlorocarbons and chlorohydrocarbons.

Chlorine consumption during the 1950s showed a several-fold increase in demand
for the production of chlorinated hydrocarbons which are used in the manufacture
of insecticides, refrigerants, propellants, silicones, lubricant additives, ete. As specific
examples of this increased demand, chloroform production in 1950 utilized approxi-
mately 40 tons per day while in 1960 this demand had increased to approximately
190 tons of chlorine per day. During the same years the production of methyl chloride
caused an increase in the daily demand for chlorine from 60 to 175 tons. Since the
demand for caustic soda did not keep pace with the increase in chlorine demand,
and since large quantities of by-product hydrogen chloride are produced in these
chlorination reactions, it has been necessary to reprocess considerable amounts of the
by-product hydrogen chloride to regenerate chlorine for further reaction demands.

Considerable research and development efforts have centered on various means of
oxidizing this by-product hydrogen chloride. The major efforts have centered around
four major processes as follows: (a) improvements in the well-known Deacon process
of catalytic oxidation using air or oxygen as the oxidizing agent, (b) chlorine liberation
processes by action of oxygen on metallic chlorides such as ferric chloride, (¢) utiliza-
tion of the Deacon process with simultaneous chlorination of organics, and (d) reac-
tion to form chlorosulfonic acid (SO;HCI) followed by catalytic decomposition yielding
sulfur dioxide, chlorine, and sulfuric acid (see Hydrochlorie acid).

Chlorine, Cl, atomic number 17, is a nonmetallic element, which, at room tem-
perature, exists as a greenish-yellow diatomic gas, Cl,, with a characteristic
choking odor. The name is derived from the Greek chloros meaning pale green or
greenish-yellow.

There are two stable isotopes of chlorine, of atomic mass 35 and 37. These occur
to the extent of approximately 75.4 and 24.6%, respectively, in the chlorine-containing
compounds. Thus the average atomic weight of this element is 35.457. In addition

1



2 CHLORINE

there are five radioactive isotopes of atomic mass 33, 34, 36, 38, and 39. The half
life of these range from approximately 2.8 seconds for the isotope of atomic mass 33 to
4.4 X 10° years for the isotope of atomic mass 36.

Chlorine is a member of the halogen family of elements (Group VII of the periodie
table) and is located vertically between fluorine and bromine, and horizontally between
sulfur and the inert gas argon. The electronic configuration of chlorine is 1s22s?2p5-
3s%3p°® electrons. In its binary compounds of hydrogen and the metals, chlorine
exhibits an oxidation number of —1.

For physical properties see Vol. 1, p. 671.

Reactions

Chlorine reacts with hydrogen slowly in the dark, but with explosive violence
in sunlight or above 250°C, forming hydrogen chloride. It will combine directly
with all metals under suitable conditions which may include the presence of moisture.
Dry chlorine, however, may be shipped in steel cylinders, tank trucks, barges, or
tank cars. Metallic chlorides, in general, are soluble in water; the exceptions include
silver, mercurous, thallous, cuprous, plumbous, and platinous chlorides as well as
antimony and bismuth oxychlorides, which are sparingly soluble. Certain of these
sparingly soluble chlorides are soluble in an aqueous solution of hydrogen chloride
forming complex chlorometallic anions. For example, cuprous chloride is soluble in
hydrochloric acid forming HCuCl;. Upon dilution, white cuprous chloride is re-

precipitated.
Chlorine reacts directly with sulfur, forming sulfur monochloride, S,Cl;, dichloride,

8Cl,, and tetrachloride, SCly; it reacts with phosphorus, yielding the trichloride, PCl;,
or the pentachloride, PCl;. It combines with iodine, forming the monochloride, ICI,
and trichloride, ICl;. Compounds of chlorine with fluorine (CIF; CIF) and with
bromine (BrCl) have been described in the chemical literature. Chlorine does not
react directly with nitrogen, but excess chlorine or hypochlorous acid will react with
ammonium salts in acidic solution, producing nitrogen trichloride, NCl; an oily
liquid which is highly explosive,
3 Cl: 4+ NH,Cl — NCI; + 4 HC1
In dilute, equimolar solutions of ammonia and hypochlorite, the unstable chloramine
(chloramide), NH,Cl, is formed,
NH; + NaClO — NH.Cl + NaOH
Treatment of chloramine with additional ammonia results in the formation of hy-
drazine (qv), NoH,, an important reducing agent which is used as a fuel in certain U.S.
rocket propellants (qv),
2 NH; + NH.CIl - N.H, + NH,Cl
The general preparation of hydrazine entails reacting chlorine with excess ammonia,
4 NH; + Cl: — 2 NH,Cl + N.H,
Dichloramine, NHCl;, is formed similarly.

Chlorine will react with many hydrocarbons, replacing one or more hydrogen
atoms and forming hydrogen chloride as a by-product. Thus with methane the
initial produet is methyl chloride,

CH, + Cl; — CH,Cl + HCI
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By successive substitutions dichloromethane, CH.Cl,, chloroform, CHCl;, and
carbon tetrachloride, CCly, are formed. With other hydrocarbons, such as turpentine,
chlorine decomposes the molecule into hydrogen chloride and carbon.

CmH“ + 8 Clz g 16 HCl + 10 C

With unsaturated hydrocarbons, chlorine produces the saturated chloride, such
as ethylene dichloride from ethylene.

CgH4 + C]z = = CzH¢Clz

Chlorine reacts with carbon disulfide forming carbon tetrachloride by replace-
ment of sulfur.

C8; + 3 Cl; = CCls + S:Cl;

Chlorine (or its aqueous solution) will displace bromine or iodine from their
metallic binary compounds. With cyanides and thiocyanates (see Cyanides), chlorine
reacts to form cyanogen chloride and thiocyanogen chloride.

NaCN + Cl, - NaCl + CNCl
NaCNS8 + Cl,— NaCl + CNSCl

Chlorine dissolves in water (maximum solubility about 19, at 9.6°C) forming
an equilibrium mixture containing hypochlorous acid, HCIO,

Cl; + H:0 = H* + CI~ + HCIO

Observation of this equilibrium indicates why high pH favors shifting toward the right
and increased acidity will tend to drive the reaction to the left.

In hypochlorous acid and hypochlorites, chlorine exhibits the oxidation number
+1, with the oxidation numbers +3, +5, and +7 being illustrated by the compounds
sodium chlorite, NaClO,, sodium chlorate, NaClOs, and sodium perchlorate, NaClO..
All of these compounds are of commercial importance and are discussed under Chlorine
oxygen acids. The oxidation-reduction potentials of chlorine in these oxidation states,
in acidic and basic solutions, appear below.

Ozidation number Reaction Volis at 25°C
-1 Cl-=14%Clh+ e —1.358
+1 acidie 14 Cl+ H:-O=H*+4 HCIO + ¢ —1.63
+3 acidic 4 Cl+2H,0=3H*+4+ HCIO: + 3e —1.63
+ 5 acidic % Cl; + 3H,0 =6 HY 4 ClOy— + 5¢ —1.47
+7 acidic % Cla+ 4H0=8HY4 ClO, + Te —1.34
+1 basic Cl™ 4+ 20H-=ClO~ + H;0 + 2¢ —0.94
+3 basic Cl- 4+ 40H- = ClO:~ + 2 HoO + 4e —0.76
45 basic Cl-4+ 6 0H-=ClO;~+ 3 H.O + 6e —0.62
+7 basic Cl- 4+ 8OH- = ClOy,~+ 4 H,O + 8e —0.51

Chlorine does not react directly with oxygen although the following oxides have
been described in the chemical literature: CLO, ClO; ClO; and Cl,O;. All are
characterized as being unstable, decomposing with varying degrees of explosive
violence.

Chlorine monoxide (hypochlorous anhydride), Cl,0, is pale orange-yellow with a
slight greenish tinge, having an odor similar to that of chlorine. It is prepared by
passing chlorine over cocled precipitated mercuric oxide,

2 HgO + 2 Cl, — HgO.HgCl; + CLO
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or by distilling a fairly concentrated solution of Lypochlorous acid at low pressure.
Chlorine monoxide explodes readily, but not violently, on heating. It may be dis-
tilled in the absence of organic matter. It is a strong oxidizing agent and will convert
most metals into a mixture of oxides and chlorides. Its composition is given by the
reaction taking place in its explosion upon heating,

20120—’2013-‘- 03

and subsequent absorption of the chlorine by potassium hydroxide. Contact of
chlorine monoxide with oxidizable materials such as paper, sulfur, phosphorus, or
carbonaceous compounds results in explosive reactions forming oxychlorides or oxides
and chlorides of the reacting elements.

Chlorine dioxide, ClO,, is a reddish-yellow unstable gas with an unpleasant odor,
which is extremely soluble in water. Its hydrate ClO,.6H0 is crystalline yellow and
stable up to 18°C. The aqueous solution is stable in the dark. The gas explodes on
the smallest provocation. Chlorine dioxide may be prepared by any of the following
means: (a) by action of chlorine on silver chlorate,

2 AgCl0O; + Cl, — 2 AgCl 4 2ClO; + O,

(b) by reaction of potassium chlorate by disproportionation on treatment with sul-
furic acid,
3 KCIO; + 3 H:804 — HCIO4 + 3 KHSO4 + H,0 + 2 ClO.

(e) by reaction of potassium chlorate with oxalic acid,
2 KCIO; + 2 HzC:O‘ —pie KzCzOg + 2 Hzo + 2 COz + 2 ClO,

or (d) by the reaction of chlorine gas on sodium chlorite,
Clz + 2 N8.0102 — 2 NaCl + 2 ClOz

Chlorine dioxide dissolves in potassium hydroxide solution according to the following
reaction:

The preparation of ClO, by the action of chlorine on sodium chlorite is an important
industrial process (see Chlorites under Chlorine oxygen acids).

Chlorine trioxide, ClO;, is prepared by the action of chlorine dioxide on ozone.
When the mixed gases are cooled with ice, brown drops of a solution of chlorine dioxide
in chlorine trioxide are formed. The chlorine dioxide is removed by distillation at
low pressure.

Chlorine trioxide decomposes even at 0°C to a mixture of other oxides of chlorine
and ultimately to oxygen and chlorine. If it is mixed with water vapor and cooled,
it yields a mixture of chlorie acid and perchloric acid,

2 Cl0; + H:0 — HCIO; + HCIO,4
but an explosion occurs if it is added to water. In the liquid state ClO; exhibits the
dimeric formula Cl;0s.

If phosphorus pentoxide is added to anhydrous or highly concentrated perchloric
acid below 0°C, the anhydride of perchloric acid, Cl,0y, is produced,

6 HCIOq + P20s — 2 HyPO4 + 3 ClOy
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Also, if potassium perchlorate is heated with chlorosulfonic acid, HOCISO,, under
reduced pressure, a good yield of CL,Oy is obtained, but the chlorine heptoxide produced
is contaminated with sulfur compounds.

Chlorine heptoxide explodes when struck or when in contact with a flame. It
has no action in the cold with sulfur, wood, or paper but explodes on contact with
iodine. Raman spectra of ClLO; indicate that the molecule consists of two ClO;
groups linked by an oxygen atom. Itisthe anhydride of perchloric acid.

Analysis

The odor of elemental chlorine serves to reveal its presence in very low concentra-
tions, but a more specific test is based upon its property of liberating iodine from aque-
ous potassium iodide. This test can be made more sensitive by the addition of a few
drops of carbon tetrachloride or carbon disulfide to the reaction vessel. Upon shaking,
the liberated iodine dissolves in the added solvent giving a violet or pinkish-purple
tint. If potassium bromide is used in place of the iodide, the chlorine liberates bromine,
which dissolves in the added heavy liquid layer, producing a yellowish-brown color.

Elementary chlorine can be estimated by indirect titration using sodium thiosul-
fate. Direct titration is not possible, as chlorine oxidizes the thiosulfate practically
quantitatively to the sulfate. The solution containing the free chlorine is therefore
treated with an excess of aqueous potassium iodide and the liberated iodine is then
titrated with standard thiosulfate solution. The reactions taking place may be rep-
resented by the following equations:

2I-4+Ch—1,+ 2Cl-
I 4+ 28,057~ — 8406~ + 21—

Certain of the oxysalts of chlorine such as hypochlorite or chlorite will also
liberate iodine from iodide in acid solution. Thus any quantitative test for elemental
chlorine should be conducted following suitable negative qualitative tests in the
material to be examined for such ions as chlorite and hypochlorite.

Chlorine, as chloride, may be detected qualitatively as a white, curdy precipitate
formed upon addition of silver nitrate solution to the solution under study. This
curdy precipitate is insoluble in nitric acid, but dissolves readily in excess ammonia
water, forming the complex silver ammine ion [Ag(NHj;),]*. Since the presence of
the thioeyanate ion will give similar reactions, this ion must be tested for, and removed,
if present, prior to the test for the chloride ion. Bromide and iodide ions will form
cream to pale yellow curdy precipitates with silver nitrate solution. Both of
these silver salts are insoluble in nitric acid, but differ from silver chloride in that silver
bromide is but slightly soluble and silver iodide is insoluble in dilute water solutions
of ammonia.

Chlorine, as chloride, may be determined gravimetrically by precipitating silver
chloride from a dilute nitric acid solution. After washing, this precipitate is carefully
dried (not ignited) at a temperature approximating 100°C.

Volumetric methods for determining chloride ion include (f) Volhard method,
(2) Mohr method, or (3) use of adsorption indicators.

In the Volhard method, an excess (known volume) of standard silver nitrate
is ‘added to the slightly acidified (nitric acid) solution of the chloride. The excess
silver ion present is then back-titrated with a standard solution of ammonium thiocya-
nate using a few drops of. ferrie sulfate solution as indicator. The presence of a pale



