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Preface

The present revision of The Finite Element Method was undertaken shortly before
the passing in January 2009 of our close friend and co-author Olgierd C. (Olek)
Zienkiewicz. His inspiration and guidance has been greatly missed in the intervening
years, however, we hope that the essence of his writings is retained in the new work
so that current and future scholars can continue to benefit from his insights and many
contributions to the field of computational mechanics. The story of his life and works
is summarized in International Journal for Numerical Methods in Engineering, 80,
2009, pp. 1-45.

It is 46years since The Finite Element Method in Structural and Continuum
Mechanics was first published. This book, which was the first dealing with the finite
element method, provided the basis from which many further developments occurred.
The expanding research and field of application of finite elements led to the second
edition in 1971, the third in 1977, the fourth as two volumes in 1989 and 1991, and
the fifth as three volumes in 2000. The size of each of these editions expanded geo-
metrically (from 272 pages in 1967 to the sixth edition of nearly 1800 pages). This
was necessary to do justice to a rapidly expanding field of professional application
and research. Even so, much filtering of the contents was necessary to keep these
editions within reasonable bounds.

In the present edition we have retained the complete works as three separate vol-
umes, each one capable of being used without the others and each one appealing
perhaps to a different audience.

The first volume The Finite Element Method: Its Basis and Fundamentals is
designed to cover quite completely all the steps necessary to solve problems repre-
sented by linear differential equations. Applications to problems of elasticity, field
problems, and plate and shell structural problems form the primary basis from which
the finite element steps are enumerated. After a summary of the basic equations in
matrix form, chapters on applications to one- to three-dimensional problems are
covered. Two methodologies are presented: weak forms (which may be used for
any linear differential equation) and variational theorems which are restricted here
to steady-state applications. The basic concepts include interpolation of solution
variables, numerical integration to evaluate the final matrices appearing in the finite
element approximation, and solution of the resulting matrix equations. Both steady-
state and transient problems are covered at an early date to permit the methods to
be used throughout the volume. The volume also covers the patch test, treatment of
constraints arising from near incompressibility and transverse shear deformations in
plates and shells, error estimation, adaptivity, and mesh generation.

In this volume we consider more advanced problems in solid and structural
mechanics while in a third volume we consider applications in fluid dynamics. It is
our intent that the present volume can be used by investigators familiar with the finite
element method at the level presented in the first volume or any other basic textbook
on the subject. However, the volume has been prepared such that it can stand alone.

XXiX



Preface

The volume has been organized to cover consecutively two main subject areas. In the
first part we consider nonlinear problems in solid mechanics and in the second part
nonlinear rod and shell problems in structural mechanics.

In Chapters 1-9 we consider nonlinear problems in solid mechanics. In these
chapters the special problem of solving nonlinear equation systems is addressed. We
begin by restricting our attention to nonlinear behavior of materials while retaining
the assumptions on small strain. This serves as a bridge to more advanced studies
later in which geometric effects from large displacements and deformations are pre-
sented. Indeed, nonlinear applications are of great importance today and of practical
interest in most areas of engineering and physics. By starting our study first using a
small strain approach we believe the reader can more easily comprehend the various
aspects which need to be understood to master the subject matter. We cover in some
detail formulations of material models for viscoelasticity, plasticity, and viscoplas-
ticity which should serve as a basis for applications to other material models. In our
study of finite deformation problems we present a series of approaches which may be
used to solve problems including extensions for multiscale constitutive models, treat-
ment of constraints such as near incompressibility, and rigid and multibody motions.

In the second part of the volume we consider problems in structural mechanics.
This part of the book has been rewritten completely and presents an introduction to
the mathematical basis used in many recent publications. The presentation is strongly
guided by the works of the late Juan Carlos Simo who also influenced works by the
second and third authors.

Chapter 10 presents a self-contained development of linear shell theory, which
includes a review of mathematical preliminaries necessary for understanding the
structural theory and its finite element implementation. Linear shell theory serves as
a model problem for the recent trend toward a strong mathematical grounding of the
finite element method; linear shell theory is a problem that embodies many impor-
tant mechanical, geometrical, and numerical analysis concepts that benefit from this
modern mathematical perspective. Rounding out the mathematical framework, a
comprehensive subset of differential geometry and calculus on manifolds is given in
Chapter 11. This chapter gives sufficient mathematical background for understand-
ing the nonlinear continuum mechanics, nonlinear rod theory, and nonlinear shell
theory covered in the subsequent chapters.

Chapter 12 summarizes the basic notation and some fundamental concepts in
nonlinear three-dimensional continuum mechanics. This chapter revisits the presen-
tation of geometrically nonlinear problems in Chapter 5 within a geometric frame-
work. Specifically, the chapter presents a curvilinear coordinate vector expression
of nonlinear continuum mechanics that forms a common departure point for the
nonlinear geometrically exact rod and shell theories of Chapters 13 and 14. The
primary goal these chapters is to present geometrically exact models in a way that is
optimally suited for numerical implementation. Much of the complexity in rods and
shells stems from the nature of the structural analysis (and, hence, is present in linear
shell theory) rather than from the nonlinear kinematics or exact geometric treatment
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of the models. Important details, such as parameterization or the definition of stress
resultants, can be isolated from the treatment of large deformation.

The volume concludes with a short chapter on computational methods that
describes a companion computer program that can be used to solve several of the
problem classes described in this volume.

We emphasize here the fact that all three of our volumes stress the importance of
considering the finite element method as a unique and whole basis of approach and
that it contains many of the other numerical analysis methods as special cases.

Resources to accompany this book

Complete source code and user manual for program FEAPpy may be obtained at no
cost from the author’s web page: www.ce.berkeley.edu/projects/feap.

R.L. Taylor and D.D. Fox
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